58 research outputs found

    Applications of cut polyhedra

    Get PDF

    Speeding up IP-based Algorithms for Constrained Quadratic 0-1 Optimization

    Get PDF
    In many practical applications, the task is to optimize a non-linear objective function over the vertices of a well-studied polytope as, e.g., the matching polytope or the travelling salesman polytope (TSP).Prominent examples are the quadratic assignment problem and the quadratic knapsack problem; further applications occur in various areas such as production planning or automatic graph drawing. In order to apply branch-and-cut methods for the exact solution of such problems, the objective function has to be linearized. However, the standard linearization usually leads to very weak relaxations. On the other hand, problem-specific polyhedral studies are often time-consuming.Our goal is the design of general separation routines that can replace detailed polyhedral studies of the resulting polytope and that can be used as a black box. As unconstrained binary quadratic optimization is equivalent to the maximum cut problem, knowledge about cut polytopes can be used in our setting. Other separation routines are inspired by the local cuts that have been developed by Applegate, Bixby, Chvatal and Cook for faster solution of large-scale traveling salesman instances. Finally, we apply quadratic reformulations of the linear constraints as proposed by Helmberg, Rendl and Weismantel for the quadratic knapsack problem. By extensive experiments, we show that a suitable combination of these methods leads to a drastical speedup in the solution of constrained quadratic 0-1 problems. We also discuss possible generalizations of these methods to arbitrary non-linear objective functions

    Minkowski Sum Construction and other Applications of Arrangements of Geodesic Arcs on the Sphere

    Full text link
    We present two exact implementations of efficient output-sensitive algorithms that compute Minkowski sums of two convex polyhedra in 3D. We do not assume general position. Namely, we handle degenerate input, and produce exact results. We provide a tight bound on the exact maximum complexity of Minkowski sums of polytopes in 3D in terms of the number of facets of the summand polytopes. The algorithms employ variants of a data structure that represents arrangements embedded on two-dimensional parametric surfaces in 3D, and they make use of many operations applied to arrangements in these representations. We have developed software components that support the arrangement data-structure variants and the operations applied to them. These software components are generic, as they can be instantiated with any number type. However, our algorithms require only (exact) rational arithmetic. These software components together with exact rational-arithmetic enable a robust, efficient, and elegant implementation of the Minkowski-sum constructions and the related applications. These software components are provided through a package of the Computational Geometry Algorithm Library (CGAL) called Arrangement_on_surface_2. We also present exact implementations of other applications that exploit arrangements of arcs of great circles embedded on the sphere. We use them as basic blocks in an exact implementation of an efficient algorithm that partitions an assembly of polyhedra in 3D with two hands using infinite translations. This application distinctly shows the importance of exact computation, as imprecise computation might result with dismissal of valid partitioning-motions.Comment: A Ph.D. thesis carried out at the Tel-Aviv university. 134 pages long. The advisor was Prof. Dan Halperi

    Speeding up IP-based Algorithms for Constrained Quadratic 0-1 Optimization

    Get PDF
    In many practical applications, the task is to optimize a non-linear objective function over the vertices of a well-studied polytope as, e.g., the matching polytope or the travelling salesman polytope (TSP).Prominent examples are the quadratic assignment problem and the quadratic knapsack problem; further applications occur in various areas such as production planning or automatic graph drawing. In order to apply branch-and-cut methods for the exact solution of such problems, the objective function has to be linearized. However, the standard linearization usually leads to very weak relaxations. On the other hand, problem-specific polyhedral studies are often time-consuming.Our goal is the design of general separation routines that can replace detailed polyhedral studies of the resulting polytope and that can be used as a black box. As unconstrained binary quadratic optimization is equivalent to the maximum cut problem, knowledge about cut polytopes can be used in our setting. Other separation routines are inspired by the local cuts that have been developed by Applegate, Bixby, Chvatal and Cook for faster solution of large-scale traveling salesman instances. Finally, we apply quadratic reformulations of the linear constraints as proposed by Helmberg, Rendl and Weismantel for the quadratic knapsack problem. By extensive experiments, we show that a suitable combination of these methods leads to a drastical speedup in the solution of constrained quadratic 0-1 problems. We also discuss possible generalizations of these methods to arbitrary non-linear objective functions

    Combinatorial optimization with one quadratic term

    Get PDF
    Diese Arbeit befasst sich mit einer neuen Herangehensweise für binäre kombinatorische Optimierungsprobleme. Die wesentliche Idee hierbei ist, die Anzahl der quadratischen Terme in der Zielfunktion auf einen einzigen zu beschränken, und das durch eine Linearisierung entstehende Polyeder zu analysieren. Für diesen Ansatz gibt es mehrere Motivationsgründe. Im Allgemeinen ist das ursprüngliche Problem mit beliebig vielen quadratischen Termen NP-schwer. Doch obwohl eine gute polyedrische Beschreibung mit schnellen Separierungsroutinen die Optimierung in einem Branch-and-Cut-Verfahren signifikant beschleunigen könnte, gibt es bislang nur wenige Erkenntnisse zur polyedrischen Struktur des binären quadratischen Optimierungsproblems. Betrachtet man das reduzierte Problem mit einem quadratischen Term, dann ist eine effiziente Optimierung möglich, falls die zugrundeliegende lineare Version effizient lösbar ist. Somit können hier auch die facettendefinierenden Ungleichungen effizient separiert werden. Darüberhinaus bleiben alle zulässigen Ungleichungen des reduzierten Problems zulässig für das ursprüngliche Problem. In Kombination bedeutet dies, dass Erkenntnisse zur Facettenstruktur des Problems mit einem quadratischen Term direkt zu einer verbesserten polyedrische Beschreibung des Ursprungsproblems führen. Für eine praktische Anwendung dieses theoretischen Ansatzes betrachten wir verschiedene konkrete Optimierungsprobleme mit einem quadratischen Term und analysieren deren jeweilige polyedrische Struktur, die sich nach der Linearisierung ergibt. Konkret betrachten wir das Minimale Spannwald- und das Minimale Spannbaumproblem, das Minimale Branching- und das Minimale Arboreszenzproblem, das Minimale Assignmentproblem und das Maximale Matchingproblem. Für jedes dieser Optimierungsprobleme leiten wir neue Klassen von facettendefinierenden Ungleichungen her. Außerdem präsentieren wir für das Minimale Spannwald- und das Minimale Spannbaumproblem eine vollständige Beschreibung der jeweiligen Polytope. Für die verwandten gerichteten Probleme, das Minimale Branching- und das Minimale Arboreszenzproblem, zeigen wir zwar einerseits einige Gemeinsamkeiten mit den ungerichteten Problemen, andererseits aber auch, dass sich die polyedrischen Strukturen im gerichteten Fall durch die zusätzlichen Gradbedingungen deutlich verkomplizieren. Bei der Untersuchung des Minimalen Assignmentproblems mit einem quadratischen Term stellen wir nicht nur die Vermutung über die vollständige polyedrische Beschreibung auf, sondern kommen insbesondere zu der überraschenden Erkenntnis, dass bereits ein einziger quadratischer Term genügen kann, um die Anzahl der Facetten von polynomiell auf exponentiell zu erhöhen. Die größte Vielfalt an Facettenklassen leiten wir für das Polyeder des Maximalen Matchingproblems mit einem quadratischen Term her. Wir zeigen jedoch auch, dass diese noch nicht genügen, um die vollständige Beschreibung des Polyeders zu erhalten. Da die meisten der hergeleiteten Facettenklassen von exponentieller Größe sind, leiten wir verschiedene Routinen für eine polynomielle Separierung her. Unsere exemplarischen Rechenergebnisse für das quadratische Minimale Spannwald- und das quadratische Minimale Spannbaumproblem zeigen die praktische Relevanz unseres Ansatzes

    (Global) Optimization: Historical notes and recent developments

    Get PDF

    Subject Index Volumes 1–200

    Get PDF
    corecore