613 research outputs found

    On Improving Capacity of Full-Duplex Small Cells with D2D

    Full text link
    The recent developments in full duplex (FD) communication promise doubling the capacity of cellular networks using self interference cancellation (SIC) techniques. FD small cells with device-to-device (D2D) communication links could achieve the expected capacity of the future cellular networks (5G). In this work, we consider joint scheduling and dynamic power algorithm (DPA) for a single cell FD small cell network with D2D links (D2DLs). We formulate the optimal user selection and power control as a non-linear programming (NLP) optimization problem to get the optimal user scheduling and transmission power in a given TTI. Our numerical results show that using DPA gives better overall throughput performance than full power transmission algorithm (FPA). Also, simultaneous transmissions (combination of uplink (UL), downlink (DL), and D2D occur 80% of the time thereby increasing the spectral efficiency and network capacity.Comment: Submitted to IEEE Globecom Conference 201

    A Survey on 5G: The Next Generation of Mobile Communication

    Full text link
    The rapidly increasing number of mobile devices, voluminous data, and higher data rate are pushing to rethink the current generation of the cellular mobile communication. The next or fifth generation (5G) cellular networks are expected to meet high-end requirements. The 5G networks are broadly characterized by three unique features: ubiquitous connectivity, extremely low latency, and very high-speed data transfer. The 5G networks would provide novel architectures and technologies beyond state-of-the-art architectures and technologies. In this paper, our intent is to find an answer to the question: "what will be done by 5G and how?" We investigate and discuss serious limitations of the fourth generation (4G) cellular networks and corresponding new features of 5G networks. We identify challenges in 5G networks, new technologies for 5G networks, and present a comparative study of the proposed architectures that can be categorized on the basis of energy-efficiency, network hierarchy, and network types. Interestingly, the implementation issues, e.g., interference, QoS, handoff, security-privacy, channel access, and load balancing, hugely effect the realization of 5G networks. Furthermore, our illustrations highlight the feasibility of these models through an evaluation of existing real-experiments and testbeds.Comment: Accepted in Elsevier Physical Communication, 24 pages, 5 figures, 2 table

    Sum-Rate Analysis and Optimization of Self-Backhauling Based Full-Duplex Radio Access System

    Full text link
    In this article, a radio access system with a self-backhauling full-duplex access node serving legacy half-duplex mobile devices is studied and analyzed. In particular, it is assumed that the access node is using the same center frequency for all the transmissions, meaning that also the backhauling is done using the same frequency resources as the uplink and downlink transmissions. It is further assumed that the access node has a massive array to facilitate efficient beamforming and self-interference nulling in its own receiver. As a starting point, the signal model for the considered access node is first derived, including all the transmitted and received signals within the cell. This is then used as a basis for obtaining the sum-rate expressions, which depict the overall rates experienced by the mobile users that are served by the access node. In addition, the data rate for the bi-directional backhaul link is also derived, since the access node must be able to backhaul itself wirelessly. The maximum achievable sum-rate is then determined by numerically solving an optimization problem constructed from the data rate expressions. The full-duplex scheme is also compared to two alternative transmission schemes, which perform all or some of the transmissions in half-duplex mode. The results show that the full-duplex capability of the access node is beneficial for maximizing the sum-rate, meaning that a simple half-duplex transmission scheme is typically not optimal. In particular, the highest sum-rate is usually provided by a relay type solution, where the access node acts as a full-duplex relay between the mobiles and the backhaul node.Comment: 30 pages, submitted for revie

    A Survey of Millimeter Wave (mmWave) Communications for 5G: Opportunities and Challenges

    Full text link
    With the explosive growth of mobile data demand, the fifth generation (5G) mobile network would exploit the enormous amount of spectrum in the millimeter wave (mmWave) bands to greatly increase communication capacity. There are fundamental differences between mmWave communications and existing other communication systems, in terms of high propagation loss, directivity, and sensitivity to blockage. These characteristics of mmWave communications pose several challenges to fully exploit the potential of mmWave communications, including integrated circuits and system design, interference management, spatial reuse, anti-blockage, and dynamics control. To address these challenges, we carry out a survey of existing solutions and standards, and propose design guidelines in architectures and protocols for mmWave communications. We also discuss the potential applications of mmWave communications in the 5G network, including the small cell access, the cellular access, and the wireless backhaul. Finally, we discuss relevant open research issues including the new physical layer technology, software-defined network architecture, measurements of network state information, efficient control mechanisms, and heterogeneous networking, which should be further investigated to facilitate the deployment of mmWave communication systems in the future 5G networks.Comment: 17 pages, 8 figures, 7 tables, Journal pape

    Full-Duplex Communications: Performance in Ultra-Dense Small-Cell Wireless Networks

    Full text link
    Theoretically, full-duplex (FD) communications can double the spectral-efficiency (SE) of a wireless link if the problem of self-interference (SI) is completely eliminated. Recent developments towards SI cancellation techniques have allowed to realize the FD communications on low-power transceivers, such as small-cell (SC) base stations. Consequently, the FD technology is being considered as a key enabler of 5G and beyond networks. In the context of 5G, FD communications have been initially investigated in a single SC and then into multiple SC environments. Due to FD operations, a single SC faces residual SI and intra-cell co-channel interference (CCI), whereas multiple SCs face additional inter-cell CCI, which grows with the number of neighboring cells. The surge of interference in the multi-cell environment poses the question of the feasibility of FD communications. In this article, we first review the FD communications in single and multiple SC environments and then provide the state-of-the-art for the CCI mitigation techniques, as well as FD feasibility studies in a multi-cell environment. Further, through numerical simulations, the SE performance gain of the FD communications in ultra-dense massive multiple input multiple-output enabled millimeter wave SCs is presented. Finally, potential open research challenges of multi-cell FD communications are highlighted.Comment: Accepted for publication in IEEE Vehicular Technology Magazine, Special Issue on 5G Technologies and Application

    Cooperation in 5G HetNets: Advanced Spectrum Access and D2D Assisted Communications

    Full text link
    The evolution of conventional wireless communication networks to the fifth generation (5G) is driven by an explosive increase in the number of wireless mobile devices and services, as well as their demand for all-time and everywhere connectivity, high data rates, low latency, high energy-efficiency and improved quality of service. To address these challenges, 5G relies on key technologies, such as full duplex (FD), device-to-device (D2D) communications, and network densification. In this article, a heterogeneous networking architecture is envisioned, where cells of different sizes and radio access technologies coexist. Specifically, collaboration for spectrum access is explored for both FD- and cognitive-based approaches, and cooperation among devices is discussed in the context of the state-of-the-art D2D assisted communication paradigm. The presented cooperative framework is expected to advance the understandings of the critical technical issues towards dynamic spectrum management for 5G heterogeneous networks.Comment: to appear in IEEE Wireless Communication

    Fundamental Green Tradeoffs: Progresses, Challenges, and Impacts on 5G Networks

    Full text link
    With years of tremendous traffic and energy consumption growth, green radio has been valued not only for theoretical research interests but also for the operational expenditure reduction and the sustainable development of wireless communications. Fundamental green tradeoffs, served as an important framework for analysis, include four basic relationships: spectrum efficiency (SE) versus energy efficiency (EE), deployment efficiency (DE) versus energy efficiency (EE), delay (DL) versus power (PW), and bandwidth (BW) versus power (PW). In this paper, we first provide a comprehensive overview on the extensive on-going research efforts and categorize them based on the fundamental green tradeoffs. We will then focus on research progresses of 4G and 5G communications, such as orthogonal frequency division multiplexing (OFDM) and non-orthogonal aggregation (NOA), multiple input multiple output (MIMO), and heterogeneous networks (HetNets). We will also discuss potential challenges and impacts of fundamental green tradeoffs, to shed some light on the energy efficient research and design for future wireless networks.Comment: revised from IEEE Communications Surveys & Tutorial

    All Technologies Work Together for Good: A Glance to Future Mobile Networks

    Full text link
    The astounding capacity requirements of 5G have motivated researchers to investigate the feasibility of many potential technologies, such as massive multiple-input multiple-output, millimeter wave, full-duplex, non-orthogonal multiple access, carrier aggregation, cognitive radio, and network ultra-densification. The benefits and challenges of these technologies have been thoroughly studied either individually or in a combination of two or three. It is not clear, however, whether all potential technologies operating together lead to fulfilling the requirements posed by 5G. This paper explores the potential benefits and challenges when all technologies coexist in an ultra-dense cellular environment. The sum rate of the network is investigated with respect to the increase in the number of small-cells and results show the capacity gains achieved by the coexistence.Comment: Accepted for publication in IEEE Wireless Communication, Special Issue-5G mmWave Small Cell Networks: Architecture, Self-Organization and Managemen

    Harvest the potential of massive MIMO with multi-layer techniques

    Full text link
    Massive MIMO is envisioned as a promising technology for 5G wireless networks due to its high potential to improve both spectral and energy efficiency. Although the massive MIMO system is based on innovations in the physical layer, the upper layer techniques also play important roles in harvesting the performance gains of massive MIMO. In this article, we begin with an analysis of the benefits and challenges of massive MIMO systems. We then investigate the multi-layer techniques for incorporating massive MIMO in several important network deployment scenarios. We conclude this article with a discussion of open and potential problems for future research.Comment: IEEE Networ

    Intelligent Interference Exploitation for Heterogeneous Cellular Networks against Eavesdropping

    Full text link
    This paper explores the co-existence of a macro cell and a small cell for heterogeneous cellular networks, where a macro base station (MBS) and small base station (SBS) transmit to respective macro user (MU) and small user (SU) through their shared spectrum in the face of a common eavesdropper. We consider two spectrum sharing mechanisms, namely the overlay spectrum sharing (OSS) and underlay spectrum sharing (USS). In the OSS, MBS and SBS take turns to access their shared spectrum. By contrast, the USS allows MBS and SBS to simultaneously transmit over the shared spectrum with the aid of power control for limiting their mutual interference, thus called interference-limited USS (IL-USS). In order to take advantage of mutual interference in confusing the eavesdropper without causing adverse effect on the MU, we propose an interference-canceled USS (IC-USS) scheme. Closed-form expressions of overall outage probability and intercept probability are derived for OSS, IL-USS and IC-USS schemes by taking into account both MBS-MU and SBS-SU transmissions. The secrecy diversity analysis is also carried out by characterizing an asymptotic behavior of the overall outage probability with a given intercept probability in the high signal-to-noise ratio region. It is shown that the secrecy diversity gains of conventional OSS and IL-USS are zero, whereas the proposed IC-USS achieves a higher secrecy diversity gain of one. This implies that with an arbitrarily low overall intercept probability, the conventional OSS and IL-USS methods converge to their respective outage probability floors, however the proposed IC-USS scheme can make the overall outage probability asymptotically decrease to zero by simply increasing the transmit power. Additionally, numerical results demonstrate an obvious advantage of the proposed IC-USS over OSS and IL-USS against eavesdropping.Comment: 12 pages, IEEE Journal on Selected Areas in Communications, 201
    • …
    corecore