19,895 research outputs found

    Practical recommendations for gradient-based training of deep architectures

    Full text link
    Learning algorithms related to artificial neural networks and in particular for Deep Learning may seem to involve many bells and whistles, called hyper-parameters. This chapter is meant as a practical guide with recommendations for some of the most commonly used hyper-parameters, in particular in the context of learning algorithms based on back-propagated gradient and gradient-based optimization. It also discusses how to deal with the fact that more interesting results can be obtained when allowing one to adjust many hyper-parameters. Overall, it describes elements of the practice used to successfully and efficiently train and debug large-scale and often deep multi-layer neural networks. It closes with open questions about the training difficulties observed with deeper architectures

    Bayesian Optimization for Adaptive MCMC

    Full text link
    This paper proposes a new randomized strategy for adaptive MCMC using Bayesian optimization. This approach applies to non-differentiable objective functions and trades off exploration and exploitation to reduce the number of potentially costly objective function evaluations. We demonstrate the strategy in the complex setting of sampling from constrained, discrete and densely connected probabilistic graphical models where, for each variation of the problem, one needs to adjust the parameters of the proposal mechanism automatically to ensure efficient mixing of the Markov chains.Comment: This paper contains 12 pages and 6 figures. A similar version of this paper has been submitted to AISTATS 2012 and is currently under revie

    No More Pesky Learning Rates

    Full text link
    The performance of stochastic gradient descent (SGD) depends critically on how learning rates are tuned and decreased over time. We propose a method to automatically adjust multiple learning rates so as to minimize the expected error at any one time. The method relies on local gradient variations across samples. In our approach, learning rates can increase as well as decrease, making it suitable for non-stationary problems. Using a number of convex and non-convex learning tasks, we show that the resulting algorithm matches the performance of SGD or other adaptive approaches with their best settings obtained through systematic search, and effectively removes the need for learning rate tuning
    • …
    corecore