389 research outputs found

    Cumulative subject index volumes 48–51

    Get PDF

    Privacy-Preserving Distributed Optimization and Learning

    Full text link
    Distributed optimization and learning has recently garnered great attention due to its wide applications in sensor networks, smart grids, machine learning, and so forth. Despite rapid development, existing distributed optimization and learning algorithms require each agent to exchange messages with its neighbors, which may expose sensitive information and raise significant privacy concerns. In this survey paper, we overview privacy-preserving distributed optimization and learning methods. We first discuss cryptography, differential privacy, and other techniques that can be used for privacy preservation and indicate their pros and cons for privacy protection in distributed optimization and learning. We believe that among these approaches, differential privacy is most promising due to its low computational and communication complexities, which are extremely appealing for modern learning based applications with high dimensions of optimization variables. We then introduce several differential-privacy algorithms that can simultaneously ensure privacy and optimization accuracy. Moreover, we provide example applications in several machine learning problems to confirm the real-world effectiveness of these algorithms. Finally, we highlight some challenges in this research domain and discuss future directions.Comment: Accepted as a chapter in the Encyclopedia of Systems and Control Engineering published by Elsevie

    Homomorphic Sensing of Subspace Arrangements

    Full text link
    Homomorphic sensing is a recent algebraic-geometric framework that studies the unique recovery of points in a linear subspace from their images under a given collection of linear maps. It has been successful in interpreting such a recovery in the case of permutations composed by coordinate projections, an important instance in applications known as unlabeled sensing, which models data that are out of order and have missing values. In this paper, we provide tighter and simpler conditions that guarantee the unique recovery for the single-subspace case, extend the result to the case of a subspace arrangement, and show that the unique recovery in a single subspace is locally stable under noise. We specialize our results to several examples of homomorphic sensing such as real phase retrieval and unlabeled sensing. In so doing, in a unified way, we obtain conditions that guarantee the unique recovery for those examples, typically known via diverse techniques in the literature, as well as novel conditions for sparse and unsigned versions of unlabeled sensing. Similarly, our noise result also implies that the unique recovery in unlabeled sensing is locally stable.Comment: 18 page

    Classical and quantum Merlin-Arthur automata

    Full text link
    We introduce Merlin-Arthur (MA) automata as Merlin provides a single certificate and it is scanned by Arthur before reading the input. We define Merlin-Arthur deterministic, probabilistic, and quantum finite state automata (resp., MA-DFAs, MA-PFAs, MA-QFAs) and postselecting MA-PFAs and MA-QFAs (resp., MA-PostPFA and MA-PostQFA). We obtain several results using different certificate lengths. We show that MA-DFAs use constant length certificates, and they are equivalent to multi-entry DFAs. Thus, they recognize all and only regular languages but can be exponential and polynomial state efficient over binary and unary languages, respectively. With sublinear length certificates, MA-PFAs can recognize several nonstochastic unary languages with cutpoint 1/2. With linear length certificates, MA-PostPFAs recognize the same nonstochastic unary languages with bounded error. With arbitrarily long certificates, bounded-error MA-PostPFAs verify every unary decidable language. With sublinear length certificates, bounded-error MA-PostQFAs verify several nonstochastic unary languages. With linear length certificates, they can verify every unary language and some NP-complete binary languages. With exponential length certificates, they can verify every binary language.Comment: 14 page

    Whither structuralism for scientific representation?

    Get PDF
    • …
    corecore