2 research outputs found

    Herbrand Consistency of Some Arithmetical Theories

    Full text link
    G\"odel's second incompleteness theorem is proved for Herbrand consistency of some arithmetical theories with bounded induction, by using a technique of logarithmic shrinking the witnesses of bounded formulas, due to Z. Adamowicz [Herbrand consistency and bounded arithmetic, \textit{Fundamenta Mathematicae} 171 (2002) 279--292]. In that paper, it was shown that one cannot always shrink the witness of a bounded formula logarithmically, but in the presence of Herbrand consistency, for theories IΔ0+Ωm{\rm I\Delta_0+\Omega_m} with m⩾2m\geqslant 2, any witness for any bounded formula can be shortened logarithmically. This immediately implies the unprovability of Herbrand consistency of a theory T⊇IΔ0+Ω2T\supseteq {\rm I\Delta_0+\Omega_2} in TT itself. In this paper, the above results are generalized for IΔ0+Ω1{\rm I\Delta_0+\Omega_1}. Also after tailoring the definition of Herbrand consistency for IΔ0{\rm I\Delta_0} we prove the corresponding theorems for IΔ0{\rm I\Delta_0}. Thus the Herbrand version of G\"odel's second incompleteness theorem follows for the theories IΔ0+Ω1{\rm I\Delta_0+\Omega_1} and IΔ0{\rm I\Delta_0}

    Bounded Arithmetic in Free Logic

    Full text link
    One of the central open questions in bounded arithmetic is whether Buss' hierarchy of theories of bounded arithmetic collapses or not. In this paper, we reformulate Buss' theories using free logic and conjecture that such theories are easier to handle. To show this, we first prove that Buss' theories prove consistencies of induction-free fragments of our theories whose formulae have bounded complexity. Next, we prove that although our theories are based on an apparently weaker logic, we can interpret theories in Buss' hierarchy by our theories using a simple translation. Finally, we investigate finitistic G\"odel sentences in our systems in the hope of proving that a theory in a lower level of Buss' hierarchy cannot prove consistency of induction-free fragments of our theories whose formulae have higher complexity
    corecore