3 research outputs found

    Quantitative structure activity relationships in computer aided molecular design

    Get PDF
    The drug development process requires the complete evaluation and identification of the chosen substance as well as its properties. It involves extensive chemical examination to achieve the best therapeutic effects which demands huge expenditure both in terms of time and money. Computer aided molecular design (CAMD) allows the production of new substances with pre-decided properties. Additionally, in order to illustrate and determine the interrelationship between the chemical structure of a compound and its biological activity, Quantitative Structure Activity Relationship (QSAR) is applied by employing a mathematical model and arranging molecular descriptors. This paper presents review of CAMD and QSAR techniques. The most common chemometric techniques are also emphasized. CAMD and QSAR are considered to be extremely efficient instruments in molecular design and accelerate the initial steps of drug development process. Furthermore, they enhance the effectiveness and reduce the cost of newly developed drugs

    Are we ready to design oral PROTACs®?

    Get PDF
    PROTACs® are expected to strongly impact the future of drug discovery. Therefore, in this work we firstly performed a statistical study to highlight the distribution of E3 ligases and POIs collected in PROTAC-DB, the main online database focused on degraders. Moreover, since the emerging technology of protein degradation deals with large and complex chemical structures, the second part of the paper focuses on how to set up a property-based design strategy to obtain oral degraders. For this purpose, we calculated a pool of seven previously ad hoc selected 2D descriptors for the 2258 publicly available degraders in PROTAC-DB (average values: MW= 972.9 Da, nC= 49.5, NAR= 4.5, PHI= 17.3, nHDon= 4.5, nHAcc= 17.7 and TPSA= 240 Å2) and compared them to a dataset of 50 bRo5 orally approved drugs. Then, a chemical space based on nC, PHI and TPSA was built and subregions with optimal permeability and bioavailability were identified. Bioavailable degraders (ARV-110 and ARV-471) tend to be closer to the Ro5 region, using mainly semi-rigid linkers. Permeable degraders, on the other hand, are placed in an average central region of the chemical space but chameleonicity could allow them to be located closer to the two Arvinas compounds

    On Hall and Kier's Topological State and Total Topological Index

    No full text
    corecore