100 research outputs found

    Fibonacci (p, r)-cubes which are median graphs

    Get PDF
    AbstractThe Fibonacci (p, r)-cube is an interconnection topology, which unifies a wide range of connection topologies, such as hypercube, Fibonacci cube, postal network, etc. It is known that the Fibonacci cubes are median graphs [S. Klavžar, On median nature and enumerative properties of Fibonacci-like cubes, Discrete Math. 299 (2005) 145–153]. The question for determining which Fibonacci (p, r)-cubes are median graphs is solved completely in this paper. We show that Fibonacci (p, r)-cubes are median graphs if and only if either r≤p and r≤2, or p=1 and r=n

    Fractonic order and emergent fermionic gauge theory

    Get PDF
    We consider fermionic systems in which fermion parity is conserved within rigid subsystems, and describe an explicit procedure for gauging such subsystem fermion parity symmetries to obtain bosonic spin Hamiltonians. We show that gauging planar or fractal subsystem fermion parity symmetry in three spatial dimensions gives rise to a plethora of exactly solvable spin models exhibiting novel gapped fractonic orders characterized by emergent fermionic gauge theory. The low energy excitations of these models include fractional quasiparticles with constrained mobility and emergent fermionic statistics. We illustrate this phenomenon through a series of examples including fermionic analogs of both foliated fracton phases and fractal spin liquids. We find that the foliated analogs actually exhibit the same fractonic order as their bosonic counterparts, while this is not generally the case for fermionic fractal spin liquids

    General phase spaces: from discrete variables to rotor and continuum limits

    Full text link
    We provide a basic introduction to discrete-variable, rotor, and continuous-variable quantum phase spaces, explaining how the latter two can be understood as limiting cases of the first. We extend the limit-taking procedures used to travel between phase spaces to a general class of Hamiltonians (including many local stabilizer codes) and provide six examples: the Harper equation, the Baxter parafermionic spin chain, the Rabi model, the Kitaev toric code, the Haah cubic code (which we generalize to qudits), and the Kitaev honeycomb model. We obtain continuous-variable generalizations of all models, some of which are novel. The Baxter model is mapped to a chain of coupled oscillators and the Rabi model to the optomechanical radiation pressure Hamiltonian. The procedures also yield rotor versions of all models, five of which are novel many-body extensions of the almost Mathieu equation. The toric and cubic codes are mapped to lattice models of rotors, with the toric code case related to U(1) lattice gauge theory.Comment: 22 pages, 3 figures; part of special issue on Rabi model; v2 minor change
    • …
    corecore