41,640 research outputs found

    K\"ahlerian information geometry for signal processing

    Full text link
    We prove the correspondence between the information geometry of a signal filter and a K\"ahler manifold. The information geometry of a minimum-phase linear system with a finite complex cepstrum norm is a K\"ahler manifold. The square of the complex cepstrum norm of the signal filter corresponds to the K\"ahler potential. The Hermitian structure of the K\"ahler manifold is explicitly emergent if and only if the impulse response function of the highest degree in zz is constant in model parameters. The K\"ahlerian information geometry takes advantage of more efficient calculation steps for the metric tensor and the Ricci tensor. Moreover, α\alpha-generalization on the geometric tensors is linear in α\alpha. It is also robust to find Bayesian predictive priors, such as superharmonic priors, because Laplace-Beltrami operators on K\"ahler manifolds are in much simpler forms than those of the non-K\"ahler manifolds. Several time series models are studied in the K\"ahlerian information geometry.Comment: 24 pages, published versio

    Improved Dropout for Shallow and Deep Learning

    Full text link
    Dropout has been witnessed with great success in training deep neural networks by independently zeroing out the outputs of neurons at random. It has also received a surge of interest for shallow learning, e.g., logistic regression. However, the independent sampling for dropout could be suboptimal for the sake of convergence. In this paper, we propose to use multinomial sampling for dropout, i.e., sampling features or neurons according to a multinomial distribution with different probabilities for different features/neurons. To exhibit the optimal dropout probabilities, we analyze the shallow learning with multinomial dropout and establish the risk bound for stochastic optimization. By minimizing a sampling dependent factor in the risk bound, we obtain a distribution-dependent dropout with sampling probabilities dependent on the second order statistics of the data distribution. To tackle the issue of evolving distribution of neurons in deep learning, we propose an efficient adaptive dropout (named \textbf{evolutional dropout}) that computes the sampling probabilities on-the-fly from a mini-batch of examples. Empirical studies on several benchmark datasets demonstrate that the proposed dropouts achieve not only much faster convergence and but also a smaller testing error than the standard dropout. For example, on the CIFAR-100 data, the evolutional dropout achieves relative improvements over 10\% on the prediction performance and over 50\% on the convergence speed compared to the standard dropout.Comment: In NIPS 201

    User Intent Prediction in Information-seeking Conversations

    Full text link
    Conversational assistants are being progressively adopted by the general population. However, they are not capable of handling complicated information-seeking tasks that involve multiple turns of information exchange. Due to the limited communication bandwidth in conversational search, it is important for conversational assistants to accurately detect and predict user intent in information-seeking conversations. In this paper, we investigate two aspects of user intent prediction in an information-seeking setting. First, we extract features based on the content, structural, and sentiment characteristics of a given utterance, and use classic machine learning methods to perform user intent prediction. We then conduct an in-depth feature importance analysis to identify key features in this prediction task. We find that structural features contribute most to the prediction performance. Given this finding, we construct neural classifiers to incorporate context information and achieve better performance without feature engineering. Our findings can provide insights into the important factors and effective methods of user intent prediction in information-seeking conversations.Comment: Accepted to CHIIR 201
    • …
    corecore