1,002 research outputs found

    On Brambles, Grid-Like Minors, and Parameterized Intractability of Monadic Second-Order Logic

    Full text link
    Brambles were introduced as the dual notion to treewidth, one of the most central concepts of the graph minor theory of Robertson and Seymour. Recently, Grohe and Marx showed that there are graphs G, in which every bramble of order larger than the square root of the treewidth is of exponential size in |G|. On the positive side, they show the existence of polynomial-sized brambles of the order of the square root of the treewidth, up to log factors. We provide the first polynomial time algorithm to construct a bramble in general graphs and achieve this bound, up to log-factors. We use this algorithm to construct grid-like minors, a replacement structure for grid-minors recently introduced by Reed and Wood, in polynomial time. Using the grid-like minors, we introduce the notion of a perfect bramble and an algorithm to find one in polynomial time. Perfect brambles are brambles with a particularly simple structure and they also provide us with a subgraph that has bounded degree and still large treewidth; we use them to obtain a meta-theorem on deciding certain parameterized subgraph-closed problems on general graphs in time singly exponential in the parameter. The second part of our work deals with providing a lower bound to Courcelle's famous theorem, stating that every graph property that can be expressed by a sentence in monadic second-order logic (MSO), can be decided by a linear time algorithm on classes of graphs of bounded treewidth. Using our results from the first part of our work we establish a strong lower bound for tractability of MSO on classes of colored graphs

    Clique versus Independent Set

    Get PDF
    Yannakakis' Clique versus Independent Set problem (CL-IS) in communication complexity asks for the minimum number of cuts separating cliques from stable sets in a graph, called CS-separator. Yannakakis provides a quasi-polynomial CS-separator, i.e. of size O(nlogn)O(n^{\log n}), and addresses the problem of finding a polynomial CS-separator. This question is still open even for perfect graphs. We show that a polynomial CS-separator almost surely exists for random graphs. Besides, if H is a split graph (i.e. has a vertex-partition into a clique and a stable set) then there exists a constant cHc_H for which we find a O(ncH)O(n^{c_H}) CS-separator on the class of H-free graphs. This generalizes a result of Yannakakis on comparability graphs. We also provide a O(nck)O(n^{c_k}) CS-separator on the class of graphs without induced path of length k and its complement. Observe that on one side, cHc_H is of order O(HlogH)O(|H| \log |H|) resulting from Vapnik-Chervonenkis dimension, and on the other side, ckc_k is exponential. One of the main reason why Yannakakis' CL-IS problem is fascinating is that it admits equivalent formulations. Our main result in this respect is to show that a polynomial CS-separator is equivalent to the polynomial Alon-Saks-Seymour Conjecture, asserting that if a graph has an edge-partition into k complete bipartite graphs, then its chromatic number is polynomially bounded in terms of k. We also show that the classical approach to the stubborn problem (arising in CSP) which consists in covering the set of all solutions by O(nlogn)O(n^{\log n}) instances of 2-SAT is again equivalent to the existence of a polynomial CS-separator

    When the Cut Condition is Enough: A Complete Characterization for Multiflow Problems in Series-Parallel Networks

    Full text link
    Let G=(V,E)G=(V,E) be a supply graph and H=(V,F)H=(V,F) a demand graph defined on the same set of vertices. An assignment of capacities to the edges of GG and demands to the edges of HH is said to satisfy the \emph{cut condition} if for any cut in the graph, the total demand crossing the cut is no more than the total capacity crossing it. The pair (G,H)(G,H) is called \emph{cut-sufficient} if for any assignment of capacities and demands that satisfy the cut condition, there is a multiflow routing the demands defined on HH within the network with capacities defined on GG. We prove a previous conjecture, which states that when the supply graph GG is series-parallel, the pair (G,H)(G,H) is cut-sufficient if and only if (G,H)(G,H) does not contain an \emph{odd spindle} as a minor; that is, if it is impossible to contract edges of GG and delete edges of GG and HH so that GG becomes the complete bipartite graph K2,pK_{2,p}, with p3p\geq 3 odd, and HH is composed of a cycle connecting the pp vertices of degree 2, and an edge connecting the two vertices of degree pp. We further prove that if the instance is \emph{Eulerian} --- that is, the demands and capacities are integers and the total of demands and capacities incident to each vertex is even --- then the multiflow problem has an integral solution. We provide a polynomial-time algorithm to find an integral solution in this case. In order to prove these results, we formulate properties of tight cuts (cuts for which the cut condition inequality is tight) in cut-sufficient pairs. We believe these properties might be useful in extending our results to planar graphs.Comment: An extended abstract of this paper will be published at the 44th Symposium on Theory of Computing (STOC 2012

    The structure of graphs not admitting a fixed immersion

    Get PDF
    We present an easy structure theorem for graphs which do not admit an immersion of the complete graph. The theorem motivates the definition of a variation of tree decompositions based on edge cuts instead of vertex cuts which we call tree-cut decompositions. We give a definition for the width of tree-cut decompositions, and using this definition along with the structure theorem for excluded clique immersions, we prove that every graph either has bounded tree-cut width or admits an immersion of a large wall

    Between Treewidth and Clique-width

    Full text link
    Many hard graph problems can be solved efficiently when restricted to graphs of bounded treewidth, and more generally to graphs of bounded clique-width. But there is a price to be paid for this generality, exemplified by the four problems MaxCut, Graph Coloring, Hamiltonian Cycle and Edge Dominating Set that are all FPT parameterized by treewidth but none of which can be FPT parameterized by clique-width unless FPT = W[1], as shown by Fomin et al [7, 8]. We therefore seek a structural graph parameter that shares some of the generality of clique-width without paying this price. Based on splits, branch decompositions and the work of Vatshelle [18] on Maximum Matching-width, we consider the graph parameter sm-width which lies between treewidth and clique-width. Some graph classes of unbounded treewidth, like distance-hereditary graphs, have bounded sm-width. We show that MaxCut, Graph Coloring, Hamiltonian Cycle and Edge Dominating Set are all FPT parameterized by sm-width

    Degree-3 Treewidth Sparsifiers

    Full text link
    We study treewidth sparsifiers. Informally, given a graph GG of treewidth kk, a treewidth sparsifier HH is a minor of GG, whose treewidth is close to kk, V(H)|V(H)| is small, and the maximum vertex degree in HH is bounded. Treewidth sparsifiers of degree 33 are of particular interest, as routing on node-disjoint paths, and computing minors seems easier in sub-cubic graphs than in general graphs. In this paper we describe an algorithm that, given a graph GG of treewidth kk, computes a topological minor HH of GG such that (i) the treewidth of HH is Ω(k/polylog(k))\Omega(k/\text{polylog}(k)); (ii) V(H)=O(k4)|V(H)| = O(k^4); and (iii) the maximum vertex degree in HH is 33. The running time of the algorithm is polynomial in V(G)|V(G)| and kk. Our result is in contrast to the known fact that unless NPcoNP/polyNP \subseteq coNP/{\sf poly}, treewidth does not admit polynomial-size kernels. One of our key technical tools, which is of independent interest, is a construction of a small minor that preserves node-disjoint routability between two pairs of vertex subsets. This is closely related to the open question of computing small good-quality vertex-cut sparsifiers that are also minors of the original graph.Comment: Extended abstract to appear in Proceedings of ACM-SIAM SODA 201

    The structure of graphs not admitting a fixed immersion

    Full text link
    We present an easy structure theorem for graphs which do not admit an immersion of the complete graph. The theorem motivates the definition of a variation of tree decompositions based on edge cuts instead of vertex cuts which we call tree-cut decompositions. We give a definition for the width of tree-cut decompositions, and using this definition along with the structure theorem for excluded clique immersions, we prove that every graph either has bounded tree-cut width or admits an immersion of a large wall

    On the tractability of some natural packing, covering and partitioning problems

    Get PDF
    In this paper we fix 7 types of undirected graphs: paths, paths with prescribed endvertices, circuits, forests, spanning trees, (not necessarily spanning) trees and cuts. Given an undirected graph G=(V,E)G=(V,E) and two "object types" A\mathrm{A} and B\mathrm{B} chosen from the alternatives above, we consider the following questions. \textbf{Packing problem:} can we find an object of type A\mathrm{A} and one of type B\mathrm{B} in the edge set EE of GG, so that they are edge-disjoint? \textbf{Partitioning problem:} can we partition EE into an object of type A\mathrm{A} and one of type B\mathrm{B}? \textbf{Covering problem:} can we cover EE with an object of type A\mathrm{A}, and an object of type B\mathrm{B}? This framework includes 44 natural graph theoretic questions. Some of these problems were well-known before, for example covering the edge-set of a graph with two spanning trees, or finding an ss-tt path PP and an ss'-tt' path PP' that are edge-disjoint. However, many others were not, for example can we find an ss-tt path PEP\subseteq E and a spanning tree TET\subseteq E that are edge-disjoint? Most of these previously unknown problems turned out to be NP-complete, many of them even in planar graphs. This paper determines the status of these 44 problems. For the NP-complete problems we also investigate the planar version, for the polynomial problems we consider the matroidal generalization (wherever this makes sense)
    corecore