20,156 research outputs found

    Inference on Counterfactual Distributions

    Get PDF
    Counterfactual distributions are important ingredients for policy analysis and decomposition analysis in empirical economics. In this article we develop modeling and inference tools for counterfactual distributions based on regression methods. The counterfactual scenarios that we consider consist of ceteris paribus changes in either the distribution of covariates related to the outcome of interest or the conditional distribution of the outcome given covariates. For either of these scenarios we derive joint functional central limit theorems and bootstrap validity results for regression-based estimators of the status quo and counterfactual outcome distributions. These results allow us to construct simultaneous confidence sets for function-valued effects of the counterfactual changes, including the effects on the entire distribution and quantile functions of the outcome as well as on related functionals. These confidence sets can be used to test functional hypotheses such as no-effect, positive effect, or stochastic dominance. Our theory applies to general counterfactual changes and covers the main regression methods including classical, quantile, duration, and distribution regressions. We illustrate the results with an empirical application to wage decompositions using data for the United States. As a part of developing the main results, we introduce distribution regression as a comprehensive and flexible tool for modeling and estimating the \textit{entire} conditional distribution. We show that distribution regression encompasses the Cox duration regression and represents a useful alternative to quantile regression. We establish functional central limit theorems and bootstrap validity results for the empirical distribution regression process and various related functionals.Comment: 55 pages, 1 table, 3 figures, supplementary appendix with additional results available from the authors' web site

    Block-Conditional Missing at Random Models for Missing Data

    Full text link
    Two major ideas in the analysis of missing data are (a) the EM algorithm [Dempster, Laird and Rubin, J. Roy. Statist. Soc. Ser. B 39 (1977) 1--38] for maximum likelihood (ML) estimation, and (b) the formulation of models for the joint distribution of the data Z{Z} and missing data indicators M{M}, and associated "missing at random"; (MAR) condition under which a model for M{M} is unnecessary [Rubin, Biometrika 63 (1976) 581--592]. Most previous work has treated Z{Z} and M{M} as single blocks, yielding selection or pattern-mixture models depending on how their joint distribution is factorized. This paper explores "block-sequential"; models that interleave subsets of the variables and their missing data indicators, and then make parameter restrictions based on assumptions in each block. These include models that are not MAR. We examine a subclass of block-sequential models we call block-conditional MAR (BCMAR) models, and an associated block-monotone reduced likelihood strategy that typically yields consistent estimates by selectively discarding some data. Alternatively, full ML estimation can often be achieved via the EM algorithm. We examine in some detail BCMAR models for the case of two multinomially distributed categorical variables, and a two block structure where the first block is categorical and the second block arises from a (possibly multivariate) exponential family distribution.Comment: Published in at http://dx.doi.org/10.1214/10-STS344 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Regression Discontinuity Designs Using Covariates

    Full text link
    We study regression discontinuity designs when covariates are included in the estimation. We examine local polynomial estimators that include discrete or continuous covariates in an additive separable way, but without imposing any parametric restrictions on the underlying population regression functions. We recommend a covariate-adjustment approach that retains consistency under intuitive conditions, and characterize the potential for estimation and inference improvements. We also present new covariate-adjusted mean squared error expansions and robust bias-corrected inference procedures, with heteroskedasticity-consistent and cluster-robust standard errors. An empirical illustration and an extensive simulation study is presented. All methods are implemented in \texttt{R} and \texttt{Stata} software packages

    A sparse conditional Gaussian graphical model for analysis of genetical genomics data

    Full text link
    Genetical genomics experiments have now been routinely conducted to measure both the genetic markers and gene expression data on the same subjects. The gene expression levels are often treated as quantitative traits and are subject to standard genetic analysis in order to identify the gene expression quantitative loci (eQTL). However, the genetic architecture for many gene expressions may be complex, and poorly estimated genetic architecture may compromise the inferences of the dependency structures of the genes at the transcriptional level. In this paper we introduce a sparse conditional Gaussian graphical model for studying the conditional independent relationships among a set of gene expressions adjusting for possible genetic effects where the gene expressions are modeled with seemingly unrelated regressions. We present an efficient coordinate descent algorithm to obtain the penalized estimation of both the regression coefficients and the sparse concentration matrix. The corresponding graph can be used to determine the conditional independence among a group of genes while adjusting for shared genetic effects. Simulation experiments and asymptotic convergence rates and sparsistency are used to justify our proposed methods. By sparsistency, we mean the property that all parameters that are zero are actually estimated as zero with probability tending to one. We apply our methods to the analysis of a yeast eQTL data set and demonstrate that the conditional Gaussian graphical model leads to a more interpretable gene network than a standard Gaussian graphical model based on gene expression data alone.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS494 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore