4 research outputs found

    Development of a cognitive mnemonic scheme for an optical Smart-technology of remote learning of the Experions PKS distributed control system on the basis of Artificial Immune Systems

    Get PDF
    Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹Π΅ вопросы, посвящённыС Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ оптичСской Smart-Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ дистанционного обучСния распрСдСлённой систСмы управлСния Experion PKS Ρ„ΠΈΡ€ΠΌΡ‹ Honeywell для Π½Π΅Ρ„Ρ‚Π΅Π³Π°Π·ΠΎΠ²ΠΎΠΉ отрасли. Около 70 % Π°Π²Π°Ρ€ΠΈΠΉ Π½Π° производствС Π²Ρ‹Π·Π²Π°Π½Ρ‹ чСловСчСским Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠΌ. Π Π°Π±ΠΎΡ‚Π° ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€ΠΎΠ² Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² наблюдСнии Π·Π° высокотСхнологичными процСссами ΠΈ ΡƒΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ ΠΈΠΌΠΈ посрСдством мнСмосхСм ΠΈ характСризуСтся ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½Ρ‹ΠΌ напряТСниСм Π·Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠ±Ρ‰Π΅ΠΉ ΡƒΡ‚ΠΎΠΌΠ»ΡΠ΅ΠΌΠΎΡΡ‚ΡŒΡŽ ΠΈ ΠΏΠΎΡ‚Π΅Ρ€Π΅ΠΉ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ внимания. Π˜Π½Π½ΠΎΠ²Π°Ρ†ΠΈΠΎΠ½Π½Π°Ρ пСрсонализированная тСхнология дистанционного обучСния ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Π΅Ρ‚ особСнности зрСния ΠΎΠ±ΡƒΡ‡Π°ΡŽΡ‰ΠΈΡ…ΡΡ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²ΠΊΠΈ Ρ†Π²Π΅Ρ‚ΠΎΠΏΠΎΠ΄Π°Ρ‡ΠΈ ΡƒΡ‡Π΅Π±Π½ΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΠΈ динамичСского прСдставлСния ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Π² зависимости ΠΎΡ‚ психотипа Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΈ основана Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΠΊΠΎΠ³Π½ΠΈΡ‚ΠΈΠ²Π½ΠΎΠΉ, оптичСской ΠΈ ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠ°Π³Π΅Π½Ρ‚Π½ΠΎΠΉ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ, Π° Ρ‚Π°ΠΊΠΆΠ΅ онтологичСском ΠΈ иммунносСтСвом ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π°Ρ…. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΊΠΎΠ³Π½ΠΈΡ‚ΠΈΠ²Π½Ρ‹Ρ… мнСмосхСм осущСствляСтся с ΡƒΡ‡Ρ‘Ρ‚ΠΎΠΌ этих особСнностСй, Ρ‡Ρ‚ΠΎ позволяСт ΡΠ½ΠΈΠ·ΠΈΡ‚ΡŒ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΡƒ Π½Π° Π·Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ ΠΈ ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ обучСния практичСским Π½Π°Π²Ρ‹ΠΊΠ°ΠΌ ΠΏΡ€ΠΈ Ρ€Π°Π±ΠΎΡ‚Π΅ с мнСмосхСмами. ΠŸΠΎΠ΄Ρ…ΠΎΠ΄ искусствСнных ΠΈΠΌΠΌΡƒΠ½Π½Ρ‹Ρ… систСм ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ для ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·Π° ΠΈ ΠΎΡ†Π΅Π½ΠΊΠΈ обучСния, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²ΠΊΠΈ процСсса получСния Π·Π½Π°Π½ΠΈΠΉ. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ функционирования дистанционной систСмы обучСния Π½Π° основС примСнСния ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² искусствСнного ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚Π° ΠΈ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° иммунносСтСвого модСлирования. РассмотрСны ΠΎΠ±Ρ‰ΠΈΠ΅ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ‹ создания мнСмосхСм ΠΈ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ мнСмосхСмы Ρ„ΠΈΡ€ΠΌΡ‹ Honeywell. ΠŸΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ дистанционной Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ, ΠΈ прСдставлСны Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ модСлирования ΠΊΠΎΠ³Π½ΠΈΡ‚ΠΈΠ²Π½Ρ‹Ρ… мнСмосхСм для Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΊΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΠΉ ΠΎΠ±ΡƒΡ‡Π°ΡŽΡ‰ΠΈΡ…ΡΡ с особСнностями зрСния.ИсслСдованиС Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΎ ΠΏΡ€ΠΈ финансовой ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠ΅ КН МОН РК Π² Ρ€Π°ΠΌΠΊΠ°Ρ… Π½Π°ΡƒΡ‡Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π° β„– АР09258508 Π½Π° Ρ‚Π΅ΠΌΡƒ: Β«Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ управлСния слоТными ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ Π½Π° основС ΡƒΠ½ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ искусствСнной ΠΈΠΌΠΌΡƒΠ½Π½ΠΎΠΉ систСмы для ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΠΉ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ с использованиСм соврСмСнной микропроцСссорной Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈΒ» (2021 – 2023 Π³Π³.)

    Inductive Pattern Formation

    Get PDF
    With the extended computational limits of algorithmic recursion, scientific investigation is transitioning away from computationally decidable problems and beginning to address computationally undecidable complexity. The analysis of deductive inference in structure-property models are yielding to the synthesis of inductive inference in process-structure simulations. Process-structure modeling has examined external order parameters of inductive pattern formation, but investigation of the internal order parameters of self-organization have been hampered by the lack of a mathematical formalism with the ability to quantitatively define a specific configuration of points. This investigation addressed this issue of quantitative synthesis. Local space was developed by the Poincare inflation of a set of points to construct neighborhood intersections, defining topological distance and introducing situated Boolean topology as a local replacement for point-set topology. Parallel development of the local semi-metric topological space, the local semi-metric probability space, and the local metric space of a set of points provides a triangulation of connectivity measures to define the quantitative architectural identity of a configuration and structure independent axes of a structural configuration space. The recursive sequence of intersections constructs a probabilistic discrete spacetime model of interacting fields to define the internal order parameters of self-organization, with order parameters external to the configuration modeled by adjusting the morphological parameters of individual neighborhoods and the interplay of excitatory and inhibitory point sets. The evolutionary trajectory of a configuration maps the development of specific hierarchical structure that is emergent from a specific set of initial conditions, with nested boundaries signaling the nonlinear properties of local causative configurations. This exploration of architectural configuration space concluded with initial process-structure-property models of deductive and inductive inference spaces. In the computationally undecidable problem of human niche construction, an adaptive-inductive pattern formation model with predictive control organized the bipartite recursion between an information structure and its physical expression as hierarchical ensembles of artificial neural network-like structures. The union of architectural identity and bipartite recursion generates a predictive structural model of an evolutionary design process, offering an alternative to the limitations of cognitive descriptive modeling. The low computational complexity of these models enable them to be embedded in physical constructions to create the artificial life forms of a real-time autonomously adaptive human habitat

    Empirically characterizing evolvability and changeability in engineering systems

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2012."June 2012." Cataloged from PDF version of thesis.Includes bibliographical references (p. 205-212).The beginning phases of system development and conceptual design require careful consideration, as these decisions will have significant influence on system lifetime performance and are often made with incomplete system knowledge. Decision makers may improve their capacity to discriminate between system concepts and design choices by measuring a system's "ilities" such as changeability, evolvability, and survivability. These ilities may enable systems to respond to perturbations in the design space, context space, and needs space in order to ensure system functionality and adequate performance over time. A system may be designed to change in response to perturbations, or remain statically robust/survivable to perturbations in order to avoid deficiencies or failures. This research attempts to analyze the mechanisms that allow system changes to occur. More specifically, this research will further the characterization of system changeability and evolvability and ultimately provide a structured and meaningful way of classifying system characteristics often described as "ilities". Value sustainment is proposed as an ultimate goal of systems, providing value in spite of perturbations in design, context, or needs. The premise of value sustainment is investigated through four distinct research thrusts: 1) a basis for defining system changes and ilities; 2) a system change examples database with categorical cluster analysis case research; 3) epoch-shift, impact, response, outcome case research; and 4) expert interviews case research. Focusing on change-related ilities, this research proposes constructs for identifying and enabling vague, yet desirable, system properties. Evolvability is characterized as a subset of changeability and defined as the ability of an architecture to be inherited and changed across generations [over time], with a set of ten proposed design principles including decentralization, redundancy, targeted modularity, scalability, integrability, reconfigurability, mimicry, leverage ancestry, disruptive architectural overhaul, and resourceful exaptation.by Jay Clark Beesemyer, Jr.S.M

    On engineering smart systems

    No full text
    A smart system exhibits the four important properties: (i) Interactive, collective, coordinated and efficient Operation (ii) Self -organization and emergence (iii) Power law scaling under emergence (iv) Adaptive. We describe the role of fractal and percolation models for understanding smart systems. A hierarchy based on metric entropy is suggested among the computational systems to differentiate ordinary system from the smart system. Engineering a general purpose smart system is not feasible, since emergence is a global behaviour (or a goal) that evolves from the local behaviour (goals) of components. This is due to the fact that the evolutionary rules for the global goal is non-computable, as it cannot be expressed as a finite composition of computable function of local goals for any arbitrary problem domain
    corecore