8 research outputs found

    On Endogenous Random Consensus and Averaging Dynamics

    Full text link
    Motivated by various random variations of Hegselmann-Krause model for opinion dynamics and gossip algorithm in an endogenously changing environment, we propose a general framework for the study of endogenously varying random averaging dynamics, i.e.\ an averaging dynamics whose evolution suffers from history dependent sources of randomness. We show that under general assumptions on the averaging dynamics, such dynamics is convergent almost surely. We also determine the limiting behavior of such dynamics and show such dynamics admit infinitely many time-varying Lyapunov functions

    Continuous-Time Consensus under Non-Instantaneous Reciprocity

    Full text link
    We consider continuous-time consensus systems whose interactions satisfy a form or reciprocity that is not instantaneous, but happens over time. We show that these systems have certain desirable properties: They always converge independently of the specific interactions taking place and there exist simple conditions on the interactions for two agents to converge to the same value. This was until now only known for systems with instantaneous reciprocity. These result are of particular relevance when analyzing systems where interactions are a priori unknown, being for example endogenously determined or random. We apply our results to an instance of such systems.Comment: 12 pages, 4 figure

    Recurrent Averaging Inequalities in Multi-Agent Control and Social Dynamics Modeling

    Full text link
    Many multi-agent control algorithms and dynamic agent-based models arising in natural and social sciences are based on the principle of iterative averaging. Each agent is associated to a value of interest, which may represent, for instance, the opinion of an individual in a social group, the velocity vector of a mobile robot in a flock, or the measurement of a sensor within a sensor network. This value is updated, at each iteration, to a weighted average of itself and of the values of the adjacent agents. It is well known that, under natural assumptions on the network's graph connectivity, this local averaging procedure eventually leads to global consensus, or synchronization of the values at all nodes. Applications of iterative averaging include, but are not limited to, algorithms for distributed optimization, for solution of linear and nonlinear equations, for multi-robot coordination and for opinion formation in social groups. Although these algorithms have similar structures, the mathematical techniques used for their analysis are diverse, and conditions for their convergence and differ from case to case. In this paper, we review many of these algorithms and we show that their properties can be analyzed in a unified way by using a novel tool based on recurrent averaging inequalities (RAIs). We develop a theory of RAIs and apply it to the analysis of several important multi-agent algorithms recently proposed in the literature

    On Endogenous Random Consensus and Averaging Dynamics

    No full text
    corecore