4,385 research outputs found

    Finitary reducibility on equivalence relations

    Full text link
    We introduce the notion of finitary computable reducibility on equivalence relations on the natural numbers. This is a weakening of the usual notion of computable reducibility, and we show it to be distinct in several ways. In particular, whereas no equivalence relation can be Πn+2\Pi_{n+2}-complete under computable reducibility, we show that, for every nn, there does exist a natural equivalence relation which is Πn+2\Pi_{n+2}-complete under finitary reducibility. We also show that our hierarchy of finitary reducibilities does not collapse, and illustrate how it sharpens certain known results. Along the way, we present several new results which use computable reducibility to establish the complexity of various naturally defined equivalence relations in the arithmetical hierarchy

    Classes of structures with no intermediate isomorphism problems

    Full text link
    We say that a theory TT is intermediate under effective reducibility if the isomorphism problems among its computable models is neither hyperarithmetic nor on top under effective reducibility. We prove that if an infinitary sentence TT is uniformly effectively dense, a property we define in the paper, then no extension of it is intermediate, at least when relativized to every oracle on a cone. As an application we show that no infinitary sentence whose models are all linear orderings is intermediate under effective reducibility relative to every oracle on a cone

    Computation with Advice

    Get PDF
    Computation with advice is suggested as generalization of both computation with discrete advice and Type-2 Nondeterminism. Several embodiments of the generic concept are discussed, and the close connection to Weihrauch reducibility is pointed out. As a novel concept, computability with random advice is studied; which corresponds to correct solutions being guessable with positive probability. In the framework of computation with advice, it is possible to define computational complexity for certain concepts of hypercomputation. Finally, some examples are given which illuminate the interplay of uniform and non-uniform techniques in order to investigate both computability with advice and the Weihrauch lattice
    • …
    corecore