6 research outputs found

    Efficient and Provably-secure Certificateless Strong Designated Verifier Signature Scheme without Pairings

    Get PDF
    Strong designated verifier signature (generally abbreviated to SDVS) allows signers to obtain absolute control over who can verify the signature, while only the designated verifier other than anyone else can verify the validity of a SDVS without being able to transfer the conviction. Certificateless PKC has unique advantages comparing with certificate-based cryptosystems and identity-based PKC, without suffering from key escrow. Motivated by these attractive features, we propose a novel efficient CL-SDVS scheme without bilinear pairings or map-to-point hash operations. The proposed scheme achieves all the required security properties including EUF-CMA, non-transferability, strongness and non-delegatability. We also estimate the computational and communication efficiency. The comparison shows that our scheme outperforms all the previous CL-(S)DVS schemes. Furthermore, the crucial security properties of the CL-SDVS scheme are formally proved based on the intractability of SCDH and ECDL assumptions in random oracle model

    On the Security of a Certificateless Strong Designated Verifier Signature Scheme

    Get PDF
    Recently, Chen et al. proposed the first non-delegatable certificateless strong designated verifier signature scheme and claimed that their scheme achieves all security requirements. However, in this paper, we disprove their claim and present a concrete attack which shows that their proposed scheme is forgeable. More precisely, we show that there exist adversaries who are able to forge any signer\u27s signature for any designated verifier on any message of his choice

    Certificateless Designated Verifier Proxy Signature

    Get PDF
    Proxy signature (PS) is a kind of digital signature, in which an entity called original signer can delegate his signing rights to another entity called proxy signer. Designated verifier signature (DVS) is a kind of digital signature where the authenticity of any signature can be verified by only one verifier who is designated by the signer when generating it. Designated verifier proxy signature (DVPS) combines the idea of DVS with the concept of proxy signature (PS) and is suitable for being applied in many scenarios from e-tender, e-voting, e-auction, e-health and e-commerce, etc. Many DVPS schemes have been proposed and Identity-based DVPS (IBDVPS) schemes have also been discussed. Certificateless public-key cryptography (CL-PKC) is acknowledged as an appealing paradigm because there exists neither the certificate management issue as in traditional PKI nor private key escrow problem as in Identity-based setting. A number of certificateless designated verifier signature (CLDVS) schemes and many certificateless proxy signature (CLPS) schemes have been proposed. However, to the best of our knowledge, the concept of Certificateless Designated Verifier Proxy Signature (CLDVPS) has not been appeared in the literature. In this paper, we formalize the definition and the security model of CLDVPS schemes. We then construct the first CLDVPS scheme and prove its security

    On Delegatability of Some Strong Designated Verifier Signature Schemes

    Get PDF
    A strong designated verifier signature scheme makes it possible for a signer to convince a designated verifier that she has signed a message in such a way that the designated verifier cannot transfer the signature to a third party, and no third party can even verify the validity of a designated verifier signature. In 2005, Lipmaa, Wang, and Bao identified a new essential security property, non delegatability, of designated verifier signature schemes. Briefly, in a non delegatability designated verifier signature scheme, neither a signer nor a designated verifier can delegate the signing rights to any third party without revealing their secret keys. However, this paper shows that four recently proposed strong designated verifier signature schemes are delegatable. These schemes do not satisfy non delegatability secure requirement of strong designated verifier signature schemes

    A New Approach to Keep the Privacy Information of the Signer in a Digital Signature Scheme

    Get PDF
    In modern applications, such as Electronic Voting, e-Health, e-Cash, there is a need that the validity of a signature should be verified by only one responsible person. This is opposite to the traditional digital signature scheme where anybody can verify a signature. There have been several solutions for this problem, the first one is we combine a signature scheme with an encryption scheme; the second one is to use the group signature; and the last one is to use the strong designated verifier signature scheme with the undeniable property. In this paper, we extend the traditional digital signature scheme to propose a new solution for the aforementioned problem. Our extension is in the sense that only a designated verifier (responsible person) can verify a signerā€™s signature, and if necessary (in case the signer refuses to admit his/her signature) the designated verifier without revealing his/her secret key is able to prove to anybody that the signer has actually generated the signature. The comparison between our proposed solution and the three existing solutions shows that our proposed solution is the best one in terms of both security and efficiency

    Security analysis of two lightweight certificateless signature schemes

    Get PDF
    Certificateless cryptography can be considered as an intermediate solution to overcome the issues in traditional public key infrastructure (PKI) and identity-based public key cryptography (ID-PKC). There exist a vast number of certificateless signature (CLS) schemes in the literature; however, most of them are not efficient enough to be utilized in limited resources environments such as Internet of things (IoT) or Healthcare Wireless Sensor Networks (HWSN). Recently, two lightweight CLS schemes have been proposed by Karati et al. and Kumar et al. to be employed in IoT and HWSNs, respectively. While both schemes are claimed to be existentially unforgeable, in this paper, we show that both these signatures can easily be forged. More specifically, it is shown that 1) in Karati et al.\u27s scheme, a type 1 adversary, considered in certificateless cryptography, can generate a valid partial private key corresponding to any user of its choice and as a consequence, it can forge any users\u27 signature on any message of its choice, and 2) in Kumar et al.\u27s scheme, both types of adversaries which are considered in certificateless cryptography are able to forge any signer\u27s signature on an arbitrary message
    corecore