77,791 research outputs found

    Simple chain grammars and languages

    Get PDF
    A subclass of the LR(0)-grammars, the class of simple chain grammars is introduced. Although there exist simple chain grammars which are not LL(k) for any k>0, this new class of grammars is very closely related to the LL(1) and simple LL(1) grammars. In fact it can be shown that every simple chain grammar has an equivalent simple LL(1) grammar. Cover properties for simple chain grammars are investigated and a deterministic pushdown transducer which acts as a right parser for simple chain grammars is presented

    Scheduling to Minimize Total Weighted Completion Time via Time-Indexed Linear Programming Relaxations

    Full text link
    We study approximation algorithms for scheduling problems with the objective of minimizing total weighted completion time, under identical and related machine models with job precedence constraints. We give algorithms that improve upon many previous 15 to 20-year-old state-of-art results. A major theme in these results is the use of time-indexed linear programming relaxations. These are natural relaxations for their respective problems, but surprisingly are not studied in the literature. We also consider the scheduling problem of minimizing total weighted completion time on unrelated machines. The recent breakthrough result of [Bansal-Srinivasan-Svensson, STOC 2016] gave a (1.5c)(1.5-c)-approximation for the problem, based on some lift-and-project SDP relaxation. Our main result is that a (1.5c)(1.5 - c)-approximation can also be achieved using a natural and considerably simpler time-indexed LP relaxation for the problem. We hope this relaxation can provide new insights into the problem

    Structural Properties of an Open Problem in Preemptive Scheduling

    Get PDF
    Structural properties of optimal preemptive schedules have been studied in a number of recent papers with a primary focus on two structural parameters: the minimum number of preemptions necessary, and a tight lower bound on `shifts', i.e., the sizes of intervals bounded by the times created by preemptions, job starts, or completions. So far only rough bounds for these parameters have been derived for specific problems. This paper sharpens the bounds on these structural parameters for a well-known open problem in the theory of preemptive scheduling: Instances consist of in-trees of nn unit-execution-time jobs with release dates, and the objective is to minimize the total completion time on two processors. This is among the current, tantalizing `threshold' problems of scheduling theory: Our literature survey reveals that any significant generalization leads to an NP-hard problem, but that any significant simplification leads to tractable problem. For the above problem, we show that the number of preemptions necessary for optimality need not exceed 2n12n-1; that the number must be of order Ω(logn)\Omega(\log n) for some instances; and that the minimum shift need not be less than 22n+12^{-2n+1}. These bounds are obtained by combinatorial analysis of optimal schedules rather than by the analysis of polytope corners for linear-program formulations, an approach to be found in earlier papers. The bounds immediately follow from a fundamental structural property called `normality', by which minimal shifts of a job are exponentially decreasing functions. In particular, the first interval between a preempted job's start and its preemption is a multiple of 1/2, the second such interval is a multiple of 1/4, and in general, the ii-th preemption occurs at a multiple of 2i2^{-i}. We expect the new structural properties to play a prominent role in finally settling a vexing, still-open question of complexity

    Polynomial Path Orders

    Full text link
    This paper is concerned with the complexity analysis of constructor term rewrite systems and its ramification in implicit computational complexity. We introduce a path order with multiset status, the polynomial path order POP*, that is applicable in two related, but distinct contexts. On the one hand POP* induces polynomial innermost runtime complexity and hence may serve as a syntactic, and fully automatable, method to analyse the innermost runtime complexity of term rewrite systems. On the other hand POP* provides an order-theoretic characterisation of the polytime computable functions: the polytime computable functions are exactly the functions computable by an orthogonal constructor TRS compatible with POP*.Comment: LMCS version. This article supersedes arXiv:1209.379

    Polynomial Path Orders: A Maximal Model

    Full text link
    This paper is concerned with the automated complexity analysis of term rewrite systems (TRSs for short) and the ramification of these in implicit computational complexity theory (ICC for short). We introduce a novel path order with multiset status, the polynomial path order POP*. Essentially relying on the principle of predicative recursion as proposed by Bellantoni and Cook, its distinct feature is the tight control of resources on compatible TRSs: The (innermost) runtime complexity of compatible TRSs is polynomially bounded. We have implemented the technique, as underpinned by our experimental evidence our approach to the automated runtime complexity analysis is not only feasible, but compared to existing methods incredibly fast. As an application in the context of ICC we provide an order-theoretic characterisation of the polytime computable functions. To be precise, the polytime computable functions are exactly the functions computable by an orthogonal constructor TRS compatible with POP*

    LHIP: Extended DCGs for Configurable Robust Parsing

    Full text link
    We present LHIP, a system for incremental grammar development using an extended DCG formalism. The system uses a robust island-based parsing method controlled by user-defined performance thresholds.Comment: 10 pages, in Proc. Coling9
    corecore