5,086 research outputs found

    Inner and Outer Bounds for the Gaussian Cognitive Interference Channel and New Capacity Results

    Full text link
    The capacity of the Gaussian cognitive interference channel, a variation of the classical two-user interference channel where one of the transmitters (referred to as cognitive) has knowledge of both messages, is known in several parameter regimes but remains unknown in general. In this paper we provide a comparative overview of this channel model as we proceed through our contributions: we present a new outer bound based on the idea of a broadcast channel with degraded message sets, and another series of outer bounds obtained by transforming the cognitive channel into channels with known capacity. We specialize the largest known inner bound derived for the discrete memoryless channel to the Gaussian noise channel and present several simplified schemes evaluated for Gaussian inputs in closed form which we use to prove a number of results. These include a new set of capacity results for the a) "primary decodes cognitive" regime, a subset of the "strong interference" regime that is not included in the "very strong interference" regime for which capacity was known, and for the b) "S-channel" in which the primary transmitter does not interfere with the cognitive receiver. Next, for a general Gaussian cognitive interference channel, we determine the capacity to within one bit/s/Hz and to within a factor two regardless of channel parameters, thus establishing rate performance guarantees at high and low SNR, respectively. We also show how different simplified transmission schemes achieve a constant gap between inner and outer bound for specific channels. Finally, we numerically evaluate and compare the various simplified achievable rate regions and outer bounds in parameter regimes where capacity is unknown, leading to further insight on the capacity region of the Gaussian cognitive interference channel.Comment: submitted to IEEE transaction of Information Theor

    The Approximate Capacity Region of the Gaussian Z-Interference Channel with Conferencing Encoders

    Full text link
    A two-user Gaussian Z-Interference Channel (GZIC) is considered, in which encoders are connected through noiseless links with finite capacities. In this setting, prior to each transmission block the encoders communicate with each other over the cooperative links. The capacity region and the sum-capacity of the channel are characterized within 1.71 bits per user and 2 bits in total, respectively. It is also established that properly sharing the total limited cooperation capacity between the cooperative links may enhance the achievable region, even when compared to the case of unidirectional transmitter cooperation with infinite cooperation capacity. To obtain the results, genie-aided upper bounds on the sum-capacity and cut-set bounds on the individual rates are compared with the achievable rate region. In the interference-limited regime, the achievable scheme enjoys a simple type of Han-Kobayashi signaling, together with the zero-forcing, and basic relaying techniques. In the noise-limited regime, it is shown that treating interference as noise achieves the capacity region up to a single bit per user.Comment: 25 pages, 6 figures, submitted to IEEE Transactions on Information Theor

    Cellular Networks With Finite Precision CSIT: GDoF Optimality of Multi-Cell TIN and Extremal Gains of Multi-Cell Cooperation

    Full text link
    We study the generalized degrees-of-freedom (GDoF) of cellular networks under finite precision channel state information at the transmitters (CSIT). We consider downlink settings modeled by the interfering broadcast channel (IBC) under no multi-cell cooperation, and the overloaded multiple-input-single-output broadcast channel (MISO-BC) under full multi-cell cooperation. We focus on three regimes of interest: the mc-TIN regime, where a scheme based on treating inter-cell interference as noise (mc-TIN) was shown to be GDoF optimal for the IBC; the mc-CTIN regime, where the GDoF region achievable by mc-TIN is convex without the need for time-sharing; and the mc-SLS regime which extends a previously identified regime, where a simple layered superposition (SLS) scheme is optimal for the 3-transmitter-3-user MISO-BC, to overloaded cellular-type networks with more users than transmitters. We first show that the optimality of mc-TIN for the IBC extends to the entire mc-CTIN regime when CSIT is limited to finite precision. The converse proof of this result relies on a new application of aligned images bounds. We then extend the IBC converse proof to the counterpart overloaded MISO-BC, obtained by enabling full transmitter cooperation. This, in turn, is utilized to show that a multi-cell variant of the SLS scheme is optimal in the mc-SLS regime under full multi-cell cooperation, albeit only for 2-cell networks. The overwhelming combinatorial complexity of the GDoF region stands in the way of extending this result to larger networks. Alternatively, we appeal to extremal network analysis, recently introduced by Chan et al., and study the GDoF gain of multi-cell cooperation over mc-TIN in the three regimes of interest. We show that this extremal GDoF gain is bounded by small constants in the mc-TIN and mc-CTIN regimes, yet scales logarithmically with the number of cells in the mc-SLS regime.Comment: Accepted for publication in the IEEE Transactions on Information Theor

    Interference Mitigation in Large Random Wireless Networks

    Full text link
    A central problem in the operation of large wireless networks is how to deal with interference -- the unwanted signals being sent by transmitters that a receiver is not interested in. This thesis looks at ways of combating such interference. In Chapters 1 and 2, we outline the necessary information and communication theory background, including the concept of capacity. We also include an overview of a new set of schemes for dealing with interference known as interference alignment, paying special attention to a channel-state-based strategy called ergodic interference alignment. In Chapter 3, we consider the operation of large regular and random networks by treating interference as background noise. We consider the local performance of a single node, and the global performance of a very large network. In Chapter 4, we use ergodic interference alignment to derive the asymptotic sum-capacity of large random dense networks. These networks are derived from a physical model of node placement where signal strength decays over the distance between transmitters and receivers. (See also arXiv:1002.0235 and arXiv:0907.5165.) In Chapter 5, we look at methods of reducing the long time delays incurred by ergodic interference alignment. We analyse the tradeoff between reducing delay and lowering the communication rate. (See also arXiv:1004.0208.) In Chapter 6, we outline a problem that is equivalent to the problem of pooled group testing for defective items. We then present some new work that uses information theoretic techniques to attack group testing. We introduce for the first time the concept of the group testing channel, which allows for modelling of a wide range of statistical error models for testing. We derive new results on the number of tests required to accurately detect defective items, including when using sequential `adaptive' tests.Comment: PhD thesis, University of Bristol, 201
    corecore