3 research outputs found

    On Connections between Constrained Optimization and Reinforcement Learning

    Full text link
    Dynamic Programming (DP) provides standard algorithms to solve Markov Decision Processes. However, these algorithms generally do not optimize a scalar objective function. In this paper, we draw connections between DP and (constrained) convex optimization. Specifically, we show clear links in the algorithmic structure between three DP schemes and optimization algorithms. We link Conservative Policy Iteration to Frank-Wolfe, Mirror-Descent Modified Policy Iteration to Mirror Descent, and Politex (Policy Iteration Using Expert Prediction) to Dual Averaging. These abstract DP schemes are representative of a number of (deep) Reinforcement Learning (RL) algorithms. By highlighting these connections (most of which have been noticed earlier, but in a scattered way), we would like to encourage further studies linking RL and convex optimization, that could lead to the design of new, more efficient, and better understood RL algorithms.Comment: Optimization Foundations of Reinforcement Learning Workshop at NeurIPS 201

    Convergence of adaptive algorithms for weakly convex constrained optimization

    Full text link
    We analyze the adaptive first order algorithm AMSGrad, for solving a constrained stochastic optimization problem with a weakly convex objective. We prove the O~(t−1/4)\mathcal{\tilde O}(t^{-1/4}) rate of convergence for the norm of the gradient of Moreau envelope, which is the standard stationarity measure for this class of problems. It matches the known rates that adaptive algorithms enjoy for the specific case of unconstrained smooth stochastic optimization. Our analysis works with mini-batch size of 11, constant first and second order moment parameters, and possibly unbounded optimization domains. Finally, we illustrate the applications and extensions of our results to specific problems and algorithms

    Model-Free Design of Stochastic LQR Controller from Reinforcement Learning and Primal-Dual Optimization Perspective

    Full text link
    To further understand the underlying mechanism of various reinforcement learning (RL) algorithms and also to better use the optimization theory to make further progress in RL, many researchers begin to revisit the linear-quadratic regulator (LQR) problem, whose setting is simple and yet captures the characteristics of RL. Inspired by this, this work is concerned with the model-free design of stochastic LQR controller for linear systems subject to Gaussian noises, from the perspective of both RL and primal-dual optimization. From the RL perspective, we first develop a new model-free off-policy policy iteration (MF-OPPI) algorithm, in which the sampled data is repeatedly used for updating the policy to alleviate the data-hungry problem to some extent. We then provide a rigorous analysis for algorithm convergence by showing that the involved iterations are equivalent to the iterations in the classical policy iteration (PI) algorithm. From the perspective of optimization, we first reformulate the stochastic LQR problem at hand as a constrained non-convex optimization problem, which is shown to have strong duality. Then, to solve this non-convex optimization problem, we propose a model-based primal-dual (MB-PD) algorithm based on the properties of the resulting Karush-Kuhn-Tucker (KKT) conditions. We also give a model-free implementation for the MB-PD algorithm by solving a transformed dual feasibility condition. More importantly, we show that the dual and primal update steps in the MB-PD algorithm can be interpreted as the policy evaluation and policy improvement steps in the PI algorithm, respectively. Finally, we provide one simulation example to show the performance of the proposed algorithms
    corecore