162 research outputs found

    Synchronisation Properties of Trees in the Kuramoto Model

    Get PDF
    We consider the Kuramoto model of coupled oscillators, specifically the case of tree networks, for which we prove a simple closed-form expression for the critical coupling. For several classes of tree, and for both uniform and Gaussian vertex frequency distributions, we provide tight closed form bounds and empirical expressions for the expected value of the critical coupling. We also provide several bounds on the expected value of the critical coupling for all trees. Finally, we show that for a given set of vertex frequencies, there is a rearrangement of oscillator frequencies for which the critical coupling is bounded by the spread of frequencies.Comment: 21 pages, 19 Figure

    Spectral Network Principle for Frequency Synchronization in Repulsive Laser Networks

    Full text link
    Network synchronization of lasers is critical for reaching high-power levels and for effective optical computing. Yet, the role of network topology for the frequency synchronization of lasers is not well understood. Here, we report our significant progress toward solving this critical problem for networks of heterogeneous laser model oscillators with repulsive coupling. We discover a general approximate principle for predicting the onset of frequency synchronization from the spectral knowledge of a complex matrix representing a combination of the signless Laplacian induced by repulsive coupling and a matrix associated with intrinsic frequency detuning. We show that the gap between the two smallest eigenvalues of the complex matrix generally controls the coupling threshold for frequency synchronization. In stark contrast with Laplacian networks, we demonstrate that local rings and all-to-all networks prevent frequency synchronization, whereas full bipartite networks have optimal synchronization properties. Beyond laser models, we show that, with a few exceptions, the spectral principle can be applied to repulsive Kuramoto networks. Our results may provide guidelines for optimal designs of scalable laser networks capable of achieving reliable synchronization

    Critical phenomena in complex networks

    Full text link
    The combination of the compactness of networks, featuring small diameters, and their complex architectures results in a variety of critical effects dramatically different from those in cooperative systems on lattices. In the last few years, researchers have made important steps toward understanding the qualitatively new critical phenomena in complex networks. We review the results, concepts, and methods of this rapidly developing field. Here we mostly consider two closely related classes of these critical phenomena, namely structural phase transitions in the network architectures and transitions in cooperative models on networks as substrates. We also discuss systems where a network and interacting agents on it influence each other. We overview a wide range of critical phenomena in equilibrium and growing networks including the birth of the giant connected component, percolation, k-core percolation, phenomena near epidemic thresholds, condensation transitions, critical phenomena in spin models placed on networks, synchronization, and self-organized criticality effects in interacting systems on networks. We also discuss strong finite size effects in these systems and highlight open problems and perspectives.Comment: Review article, 79 pages, 43 figures, 1 table, 508 references, extende

    On the typical and atypical solutions to the Kuramoto equations

    Full text link
    The Kuramoto model is a dynamical system that models the interaction of coupled oscillators. There has been much work to effectively bound the number of equilibria to the Kuramoto model for a given network. By formulating the Kuramoto equations as a system of algebraic equations, we first relate the complex root count of the Kuramoto equations to the combinatorics of the underlying network by showing that the complex root count is generically equal to the normalized volume of the corresponding adjacency polytope of the network. We then give explicit algebraic conditions under which this bound is strict and show that there are conditions where the Kuramoto equations have infinitely many equilibria.Comment: 28 page
    • …
    corecore