30,287 research outputs found

    Convergence of multivariate belief propagation, with applications to cuckoo hashing and load balancing.

    Get PDF
    International audienceThis paper is motivated by two applications, namely i) generalizations of cuckoo hashing, a computationally simple approach to assigning keys to objects, and ii) load balancing in content distribution networks, where one is interested in determining the impact of content replication on performance. These two problems admit a common abstraction: in both scenarios, performance is characterized by the maximum weight of a generalization of a matching in a bipartite graph, featuring node and edge capacities. Our main result is a law of large numbers characterizing the asymptotic maximum weight matching in the limit of large bipartite random graphs, when the graphs admit a local weak limit that is a tree. This result specializes to the two application scenarios, yielding new results in both contexts. In contrast with previous results, the key novelty is the ability to handle edge capacities with arbitrary integer values. An analysis of belief propagation algorithms (BP) with multivariate belief vectors underlies the proof. In particular, we show convergence of the corresponding BP by exploiting monotonicity of the belief vectors with respect to the so-called upshifted likelihood ratio stochastic order. This auxiliary result can be of independent interest, providing a new set of structural conditions which ensure convergence of BP

    Weight Space Structure and Internal Representations: a Direct Approach to Learning and Generalization in Multilayer Neural Network

    Full text link
    We analytically derive the geometrical structure of the weight space in multilayer neural networks (MLN), in terms of the volumes of couplings associated to the internal representations of the training set. Focusing on the parity and committee machines, we deduce their learning and generalization capabilities both reinterpreting some known properties and finding new exact results. The relationship between our approach and information theory as well as the Mitchison--Durbin calculation is established. Our results are exact in the limit of a large number of hidden units, showing that MLN are a class of exactly solvable models with a simple interpretation of replica symmetry breaking.Comment: 12 pages, 1 compressed ps figure (uufile), RevTeX fil

    Improving Christofides' Algorithm for the s-t Path TSP

    Full text link
    We present a deterministic (1+sqrt(5))/2-approximation algorithm for the s-t path TSP for an arbitrary metric. Given a symmetric metric cost on n vertices including two prespecified endpoints, the problem is to find a shortest Hamiltonian path between the two endpoints; Hoogeveen showed that the natural variant of Christofides' algorithm is a 5/3-approximation algorithm for this problem, and this asymptotically tight bound in fact has been the best approximation ratio known until now. We modify this algorithm so that it chooses the initial spanning tree based on an optimal solution to the Held-Karp relaxation rather than a minimum spanning tree; we prove this simple but crucial modification leads to an improved approximation ratio, surpassing the 20-year-old barrier set by the natural Christofides' algorithm variant. Our algorithm also proves an upper bound of (1+sqrt(5))/2 on the integrality gap of the path-variant Held-Karp relaxation. The techniques devised in this paper can be applied to other optimization problems as well: these applications include improved approximation algorithms and improved LP integrality gap upper bounds for the prize-collecting s-t path problem and the unit-weight graphical metric s-t path TSP.Comment: 31 pages, 5 figure

    Decomposition approaches to integration without a measure

    Get PDF
    Extending the idea of Even and Lehrer [3], we discuss a general approach to integration based on a given decomposition system equipped with a weighting function, and a decomposition of the integrated function. We distinguish two type of decompositions: sub-decomposition based integrals (in economics linked with optimization problems to maximize the possible profit) and super-decomposition based integrals (linked with costs minimization). We provide several examples (both theoretical and realistic) to stress that our approach generalizes that of Even and Lehrer [3] and also covers problems of linear programming and combinatorial optimization. Finally, we introduce some new types of integrals related to optimization tasks.Comment: 15 page
    • …
    corecore