29,360 research outputs found

    Strongly polynomial algorithm for a class of minimum-cost flow problems with separable convex objectives

    Get PDF
    A well-studied nonlinear extension of the minimum-cost flow problem is to minimize the objective βˆ‘ij∈ECij(fij)\sum_{ij\in E} C_{ij}(f_{ij}) over feasible flows ff, where on every arc ijij of the network, CijC_{ij} is a convex function. We give a strongly polynomial algorithm for the case when all CijC_{ij}'s are convex quadratic functions, settling an open problem raised e.g. by Hochbaum [1994]. We also give strongly polynomial algorithms for computing market equilibria in Fisher markets with linear utilities and with spending constraint utilities, that can be formulated in this framework (see Shmyrev [2009], Devanur et al. [2011]). For the latter class this resolves an open question raised by Vazirani [2010]. The running time is O(m4log⁑m)O(m^4\log m) for quadratic costs, O(n4+n2(m+nlog⁑n)log⁑n)O(n^4+n^2(m+n\log n)\log n) for Fisher's markets with linear utilities and O(mn3+m2(m+nlog⁑n)log⁑m)O(mn^3 +m^2(m+n\log n)\log m) for spending constraint utilities. All these algorithms are presented in a common framework that addresses the general problem setting. Whereas it is impossible to give a strongly polynomial algorithm for the general problem even in an approximate sense (see Hochbaum [1994]), we show that assuming the existence of certain black-box oracles, one can give an algorithm using a strongly polynomial number of arithmetic operations and oracle calls only. The particular algorithms can be derived by implementing these oracles in the respective settings

    Sum-Rate Maximization in Two-Way AF MIMO Relaying: Polynomial Time Solutions to a Class of DC Programming Problems

    Full text link
    Sum-rate maximization in two-way amplify-and-forward (AF) multiple-input multiple-output (MIMO) relaying belongs to the class of difference-of-convex functions (DC) programming problems. DC programming problems occur as well in other signal processing applications and are typically solved using different modifications of the branch-and-bound method. This method, however, does not have any polynomial time complexity guarantees. In this paper, we show that a class of DC programming problems, to which the sum-rate maximization in two-way MIMO relaying belongs, can be solved very efficiently in polynomial time, and develop two algorithms. The objective function of the problem is represented as a product of quadratic ratios and parameterized so that its convex part (versus the concave part) contains only one (or two) optimization variables. One of the algorithms is called POlynomial-Time DC (POTDC) and is based on semi-definite programming (SDP) relaxation, linearization, and an iterative search over a single parameter. The other algorithm is called RAte-maximization via Generalized EigenvectorS (RAGES) and is based on the generalized eigenvectors method and an iterative search over two (or one, in its approximate version) optimization variables. We also derive an upper-bound for the optimal values of the corresponding optimization problem and show by simulations that this upper-bound can be achieved by both algorithms. The proposed methods for maximizing the sum-rate in the two-way AF MIMO relaying system are shown to be superior to other state-of-the-art algorithms.Comment: 35 pages, 10 figures, Submitted to the IEEE Trans. Signal Processing in Nov. 201
    • …
    corecore