1,093 research outputs found

    Planar L-Drawings of Directed Graphs

    Full text link
    We study planar drawings of directed graphs in the L-drawing standard. We provide necessary conditions for the existence of these drawings and show that testing for the existence of a planar L-drawing is an NP-complete problem. Motivated by this result, we focus on upward-planar L-drawings. We show that directed st-graphs admitting an upward- (resp. upward-rightward-) planar L-drawing are exactly those admitting a bitonic (resp. monotonically increasing) st-ordering. We give a linear-time algorithm that computes a bitonic (resp. monotonically increasing) st-ordering of a planar st-graph or reports that there exists none.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Transforming planar graph drawings while maintaining height

    Full text link
    There are numerous styles of planar graph drawings, notably straight-line drawings, poly-line drawings, orthogonal graph drawings and visibility representations. In this note, we show that many of these drawings can be transformed from one style to another without changing the height of the drawing. We then give some applications of these transformations

    L-Drawings of Directed Graphs

    Full text link
    We introduce L-drawings, a novel paradigm for representing directed graphs aiming at combining the readability features of orthogonal drawings with the expressive power of matrix representations. In an L-drawing, vertices have exclusive xx- and yy-coordinates and edges consist of two segments, one exiting the source vertically and one entering the destination horizontally. We study the problem of computing L-drawings using minimum ink. We prove its NP-completeness and provide a heuristics based on a polynomial-time algorithm that adds a vertex to a drawing using the minimum additional ink. We performed an experimental analysis of the heuristics which confirms its effectiveness.Comment: 11 pages, 7 figure

    Drawing Activity Diagrams

    Get PDF
    Activity diagrams experience an increasing importance in the design and description of software systems. Unfortunately, previous approaches for automatic layout support fail or are just insufficient to capture the complexity of the related requirements. We propose a new approach tailored to the needs of activity diagrams which combines the advantages of two fundamental layout concepts called "Sugiyama's approach" and "topology-shape-metrics approach", originally developed for layered layouts of directed graphs and for orthogonal layout of undirected graphs respectively

    Orthogonal Graph Drawing with Inflexible Edges

    Full text link
    We consider the problem of creating plane orthogonal drawings of 4-planar graphs (planar graphs with maximum degree 4) with constraints on the number of bends per edge. More precisely, we have a flexibility function assigning to each edge ee a natural number flex(e)\mathrm{flex}(e), its flexibility. The problem FlexDraw asks whether there exists an orthogonal drawing such that each edge ee has at most flex(e)\mathrm{flex}(e) bends. It is known that FlexDraw is NP-hard if flex(e)=0\mathrm{flex}(e) = 0 for every edge ee. On the other hand, FlexDraw can be solved efficiently if flex(e)≄1\mathrm{flex}(e) \ge 1 and is trivial if flex(e)≄2\mathrm{flex}(e) \ge 2 for every edge ee. To close the gap between the NP-hardness for flex(e)=0\mathrm{flex}(e) = 0 and the efficient algorithm for flex(e)≄1\mathrm{flex}(e) \ge 1, we investigate the computational complexity of FlexDraw in case only few edges are inflexible (i.e., have flexibility~00). We show that for any Δ>0\varepsilon > 0 FlexDraw is NP-complete for instances with O(nΔ)O(n^\varepsilon) inflexible edges with pairwise distance Ω(n1−Δ)\Omega(n^{1-\varepsilon}) (including the case where they induce a matching). On the other hand, we give an FPT-algorithm with running time O(2k⋅n⋅Tflow(n))O(2^k\cdot n \cdot T_{\mathrm{flow}}(n)), where Tflow(n)T_{\mathrm{flow}}(n) is the time necessary to compute a maximum flow in a planar flow network with multiple sources and sinks, and kk is the number of inflexible edges having at least one endpoint of degree 4.Comment: 23 pages, 5 figure
    • 

    corecore