13,384 research outputs found

    Latent Autoregressive Source Separation

    Full text link
    Autoregressive models have achieved impressive results over a wide range of domains in terms of generation quality and downstream task performance. In the continuous domain, a key factor behind this success is the usage of quantized latent spaces (e.g., obtained via VQ-VAE autoencoders), which allow for dimensionality reduction and faster inference times. However, using existing pre-trained models to perform new non-trivial tasks is difficult since it requires additional fine-tuning or extensive training to elicit prompting. This paper introduces LASS as a way to perform vector-quantized Latent Autoregressive Source Separation (i.e., de-mixing an input signal into its constituent sources) without requiring additional gradient-based optimization or modifications of existing models. Our separation method relies on the Bayesian formulation in which the autoregressive models are the priors, and a discrete (non-parametric) likelihood function is constructed by performing frequency counts over latent sums of addend tokens. We test our method on images and audio with several sampling strategies (e.g., ancestral, beam search) showing competitive results with existing approaches in terms of separation quality while offering at the same time significant speedups in terms of inference time and scalability to higher dimensional data.Comment: Accepted to AAAI 202

    Robust Bayesian inference via coarsening

    Full text link
    The standard approach to Bayesian inference is based on the assumption that the distribution of the data belongs to the chosen model class. However, even a small violation of this assumption can have a large impact on the outcome of a Bayesian procedure. We introduce a simple, coherent approach to Bayesian inference that improves robustness to perturbations from the model: rather than condition on the data exactly, one conditions on a neighborhood of the empirical distribution. When using neighborhoods based on relative entropy estimates, the resulting "coarsened" posterior can be approximated by simply tempering the likelihood---that is, by raising it to a fractional power---thus, inference is often easily implemented with standard methods, and one can even obtain analytical solutions when using conjugate priors. Some theoretical properties are derived, and we illustrate the approach with real and simulated data, using mixture models, autoregressive models of unknown order, and variable selection in linear regression

    Bayesian Model Selection for Beta Autoregressive Processes

    Get PDF
    We deal with Bayesian inference for Beta autoregressive processes. We restrict our attention to the class of conditionally linear processes. These processes are particularly suitable for forecasting purposes, but are difficult to estimate due to the constraints on the parameter space. We provide a full Bayesian approach to the estimation and include the parameter restrictions in the inference problem by a suitable specification of the prior distributions. Moreover in a Bayesian framework parameter estimation and model choice can be solved simultaneously. In particular we suggest a Markov-Chain Monte Carlo (MCMC) procedure based on a Metropolis-Hastings within Gibbs algorithm and solve the model selection problem following a reversible jump MCMC approach

    A spliced Gamma-Generalized Pareto model for short-term extreme wind speed probabilistic forecasting

    Get PDF
    Renewable sources of energy such as wind power have become a sustainable alternative to fossil fuel-based energy. However, the uncertainty and fluctuation of the wind speed derived from its intermittent nature bring a great threat to the wind power production stability, and to the wind turbines themselves. Lately, much work has been done on developing models to forecast average wind speed values, yet surprisingly little has focused on proposing models to accurately forecast extreme wind speeds, which can damage the turbines. In this work, we develop a flexible spliced Gamma-Generalized Pareto model to forecast extreme and non-extreme wind speeds simultaneously. Our model belongs to the class of latent Gaussian models, for which inference is conveniently performed based on the integrated nested Laplace approximation method. Considering a flexible additive regression structure, we propose two models for the latent linear predictor to capture the spatio-temporal dynamics of wind speeds. Our models are fast to fit and can describe both the bulk and the tail of the wind speed distribution while producing short-term extreme and non-extreme wind speed probabilistic forecasts.Comment: 25 page

    A Simple Class of Bayesian Nonparametric Autoregression Models

    Get PDF
    We introduce a model for a time series of continuous outcomes, that can be expressed as fully nonparametric regression or density regression on lagged terms. The model is based on a dependent Dirichlet process prior on a family of random probability measures indexed by the lagged covariates. The approach is also extended to sequences of binary responses. We discuss implementation and applications of the models to a sequence of waiting times between eruptions of the Old Faithful Geyser, and to a dataset consisting of sequences of recurrence indicators for tumors in the bladder of several patients.MIUR 2008MK3AFZFONDECYT 1100010NIH/NCI R01CA075981Mathematic

    Bayesian Nonparametric Calibration and Combination of Predictive Distributions

    Get PDF
    We introduce a Bayesian approach to predictive density calibration and combination that accounts for parameter uncertainty and model set incompleteness through the use of random calibration functionals and random combination weights. Building on the work of Ranjan, R. and Gneiting, T. (2010) and Gneiting, T. and Ranjan, R. (2013), we use infinite beta mixtures for the calibration. The proposed Bayesian nonparametric approach takes advantage of the flexibility of Dirichlet process mixtures to achieve any continuous deformation of linearly combined predictive distributions. The inference procedure is based on Gibbs sampling and allows accounting for uncertainty in the number of mixture components, mixture weights, and calibration parameters. The weak posterior consistency of the Bayesian nonparametric calibration is provided under suitable conditions for unknown true density. We study the methodology in simulation examples with fat tails and multimodal densities and apply it to density forecasts of daily S&P returns and daily maximum wind speed at the Frankfurt airport.Comment: arXiv admin note: text overlap with arXiv:1305.2026 by other author
    • …
    corecore