71 research outputs found

    Stable flocking of multiple inertial agents on balanced graphs

    Full text link

    On the number of unlabeled vertices in edge-friendly labelings of graphs

    Full text link
    Let GG be a graph with vertex set V(G)V(G) and edge set E(G)E(G), and ff be a 0-1 labeling of E(G)E(G) so that the absolute difference in the number of edges labeled 1 and 0 is no more than one. Call such a labeling ff \emph{edge-friendly}. We say an edge-friendly labeling induces a \emph{partial vertex labeling} if vertices which are incident to more edges labeled 1 than 0, are labeled 1, and vertices which are incident to more edges labeled 0 than 1, are labeled 0. Vertices that are incident to an equal number of edges of both labels we call \emph{unlabeled}. Call a procedure on a labeled graph a \emph{label switching algorithm} if it consists of pairwise switches of labels. Given an edge-friendly labeling of KnK_n, we show a label switching algorithm producing an edge-friendly relabeling of KnK_n such that all the vertices are labeled. We call such a labeling \textit{opinionated}.Comment: 7 pages, accepted to Discrete Mathematics, special issue dedicated to Combinatorics 201

    Similarity Decomposition Approach to Oscillatory Synchronization for Multiple Mechanical Systems With a Virtual Leader

    Full text link
    This paper addresses the oscillatory synchronization problem for multiple uncertain mechanical systems with a virtual leader, and the interaction topology among them is assumed to contain a directed spanning tree. We propose an adaptive control scheme to achieve the goal of oscillatory synchronization. Using the similarity decomposition approach, we show that the position and velocity synchronization errors between each mechanical system (or follower) and the virtual leader converge to zero. The performance of the proposed adaptive scheme is shown by numerical simulation results.Comment: 15 pages, 3 figures, published in 2014 Chinese Control Conferenc

    Second-Order Consensus of Networked Mechanical Systems With Communication Delays

    Full text link
    In this paper, we consider the second-order consensus problem for networked mechanical systems subjected to nonuniform communication delays, and the mechanical systems are assumed to interact on a general directed topology. We propose an adaptive controller plus a distributed velocity observer to realize the objective of second-order consensus. It is shown that both the positions and velocities of the mechanical agents synchronize, and furthermore, the velocities of the mechanical agents converge to the scaled weighted average value of their initial ones. We further demonstrate that the proposed second-order consensus scheme can be used to solve the leader-follower synchronization problem with a constant-velocity leader and under constant communication delays. Simulation results are provided to illustrate the performance of the proposed adaptive controllers.Comment: 16 pages, 5 figures, submitted to IEEE Transactions on Automatic Contro
    • …
    corecore