13,552 research outputs found

    Likelihood inference for small variance components

    No full text
    In this paper, we develop likelihood-based methods for making inferences about the components of variance in a general normal mixed linear model. In particular, we use local asymptotic approximations to construct confidence intervals for the components of variance when the components are close to the boundary of the parameter space. In the process, we explore the question of how to profile the restricted likelihood (REML), show that general REML estimates have a lower probability of being on the boundary than maximum likelihood estimates, and show that the likelihood-ratio test based on the local asymptotic approximation has higher power against local alternatives than the likelihood-ratio test based on the usual chi-squared approximation. We explore the finite sample properties of the proposed intervals by means of a small simulation study

    Sampling Plans for Control-Inspection Schemes Under Independent and Dependent Sampling Designs With Applications to Photovoltaics

    Full text link
    The evaluation of produced items at the time of delivery is, in practice, usually amended by at least one inspection at later time points. We extend the methodology of acceptance sampling for variables for arbitrary unknown distributions when additional sampling infor- mation is available to such settings. Based on appropriate approximations of the operating characteristic, we derive new acceptance sampling plans that control the overall operating characteristic. The results cover the case of independent sampling as well as the case of dependent sampling. In particular, we study a modified panel sampling design and the case of spatial batch sampling. The latter is advisable in photovoltaic field monitoring studies, since it allows to detect and analyze local clusters of degraded or damaged modules. Some finite sample properties are examined by a simulation study, focusing on the accuracy of estimation
    corecore