539,770 research outputs found

    Acquiring Word-Meaning Mappings for Natural Language Interfaces

    Full text link
    This paper focuses on a system, WOLFIE (WOrd Learning From Interpreted Examples), that acquires a semantic lexicon from a corpus of sentences paired with semantic representations. The lexicon learned consists of phrases paired with meaning representations. WOLFIE is part of an integrated system that learns to transform sentences into representations such as logical database queries. Experimental results are presented demonstrating WOLFIE's ability to learn useful lexicons for a database interface in four different natural languages. The usefulness of the lexicons learned by WOLFIE are compared to those acquired by a similar system, with results favorable to WOLFIE. A second set of experiments demonstrates WOLFIE's ability to scale to larger and more difficult, albeit artificially generated, corpora. In natural language acquisition, it is difficult to gather the annotated data needed for supervised learning; however, unannotated data is fairly plentiful. Active learning methods attempt to select for annotation and training only the most informative examples, and therefore are potentially very useful in natural language applications. However, most results to date for active learning have only considered standard classification tasks. To reduce annotation effort while maintaining accuracy, we apply active learning to semantic lexicons. We show that active learning can significantly reduce the number of annotated examples required to achieve a given level of performance

    Learning to Rank for Active Learning via Multi-Task Bilevel Optimization

    Full text link
    Active learning is a promising paradigm to reduce the labeling cost by strategically requesting labels to improve model performance. However, existing active learning methods often rely on expensive acquisition function to compute, extensive modeling retraining and multiple rounds of interaction with annotators. To address these limitations, we propose a novel approach for active learning, which aims to select batches of unlabeled instances through a learned surrogate model for data acquisition. A key challenge in this approach is developing an acquisition function that generalizes well, as the history of data, which forms part of the utility function's input, grows over time. Our novel algorithmic contribution is a bilevel multi-task bilevel optimization framework that predicts the relative utility -- measured by the validation accuracy -- of different training sets, and ensures the learned acquisition function generalizes effectively. For cases where validation accuracy is expensive to evaluate, we introduce efficient interpolation-based surrogate models to estimate the utility function, reducing the evaluation cost. We demonstrate the performance of our approach through extensive experiments on standard active classification benchmarks. By employing our learned utility function, we show significant improvements over traditional techniques, paving the way for more efficient and effective utility maximization in active learning applications

    Deep Bayesian Active Learning with Image Data

    Get PDF
    Even though active learning forms an important pillar of machine learning, deep learning tools are not prevalent within it. Deep learning poses several difficulties when used in an active learning setting. First, active learning (AL) methods generally rely on being able to learn and update models from small amounts of data. Recent advances in deep learning, on the other hand, are notorious for their dependence on large amounts of data. Second, many AL acquisition functions rely on model uncertainty, yet deep learning methods rarely represent such model uncertainty. In this paper we combine recent advances in Bayesian deep learning into the active learning framework in a practical way. We develop an active learning framework for high dimensional data, a task which has been extremely challenging so far, with very sparse existing literature. Taking advantage of specialised models such as Bayesian convolutional neural networks, we demonstrate our active learning techniques with image data, obtaining a significant improvement on existing active learning approaches. We demonstrate this on both the MNIST dataset, as well as for skin cancer diagnosis from lesion images (ISIC2016 task).Alan Turing Institute Grant EP/N510129/1 EPSRC Grant EP/N014162/1 Qualcom
    • …
    corecore