3 research outputs found

    Secure Degrees of Freedom of MIMO X-Channels with Output Feedback and Delayed CSIT

    Get PDF
    We investigate the problem of secure transmission over a two-user multi-input multi-output (MIMO) X-channel in which channel state information is provided with one-unit delay to both transmitters (CSIT), and each receiver feeds back its channel output to a different transmitter. We refer to this model as MIMO X-channel with asymmetric output feedback and delayed CSIT. The transmitters are equipped with M-antennas each, and the receivers are equipped with N-antennas each. For this model, accounting for both messages at each receiver, we characterize the optimal sum secure degrees of freedom (SDoF) region. We show that, in presence of asymmetric output feedback and delayed CSIT, the sum SDoF region of the MIMO X-channel is same as the SDoF region of a two-user MIMO BC with 2M-antennas at the transmitter, N-antennas at each receiver and delayed CSIT. This result shows that, upon availability of asymmetric output feedback and delayed CSIT, there is no performance loss in terms of sum SDoF due to the distributed nature of the transmitters. Next, we show that this result also holds if only output feedback is conveyed to the transmitters, but in a symmetric manner, i.e., each receiver feeds back its output to both transmitters and no CSIT. We also study the case in which only asymmetric output feedback is provided to the transmitters, i.e., without CSIT, and derive a lower bound on the sum SDoF for this model. Furthermore, we specialize our results to the case in which there are no security constraints. In particular, similar to the setting with security constraints, we show that the optimal sum DoF region of the (M,M,N,N)--MIMO X-channel with asymmetric output feedback and delayed CSIT is same as the DoF region of a two-user MIMO BC with 2M-antennas at the transmitter, N-antennas at each receiver, and delayed CSIT. We illustrate our results with some numerical examples.Comment: To Appear in IEEE Transactions on Information Forensics and Securit

    On Cooperative Multiple Access Channels with Delayed CSI at Transmitters

    Full text link
    We consider a cooperative two-user multiaccess channel in which the transmission is controlled by a random state. Both encoders transmit a common message and, one of the encoders also transmits an individual message. We study the capacity region of this communication model for different degrees of availability of the states at the encoders, causally or strictly causally. In the case in which the states are revealed causally to both encoders but not to the decoder we find an explicit characterization of the capacity region in the discrete memoryless case. In the case in which the states are revealed only strictly causally to both encoders, we establish inner and outer bounds on the capacity region. The outer bound is non-trivial, and has a relatively simple form. It has the advantage of incorporating only one auxiliary random variable. We then introduce a class of cooperative multiaccess channels with states known strictly causally at both encoders for which the inner and outer bounds agree; and so we characterize the capacity region for this class. In this class of channels, the state can be obtained as a deterministic function of the channel inputs and output. We also study the model in which the states are revealed, strictly causally, in an asymmetric manner, to only one encoder. Throughout the paper, we discuss a number of examples; and compute the capacity region of some of these examples. The results shed more light on the utility of delayed channel state information for increasing the capacity region of state-dependent cooperative multiaccess channels; and tie with recent progress in this framework.Comment: 54 pages. To appear in IEEE Transactions on Information Theory. arXiv admin note: substantial text overlap with arXiv:1201.327
    corecore