16,817 research outputs found

    Covering line graphs with equivalence relations

    Get PDF
    An equivalence graph is a disjoint union of cliques, and the equivalence number eq(G)\mathit{eq}(G) of a graph GG is the minimum number of equivalence subgraphs needed to cover the edges of GG. We consider the equivalence number of a line graph, giving improved upper and lower bounds: 13log2log2χ(G)<eq(L(G))2log2log2χ(G)+2\frac 13 \log_2\log_2 \chi(G) < \mathit{eq}(L(G)) \leq 2\log_2\log_2 \chi(G) + 2. This disproves a recent conjecture that eq(L(G))\mathit{eq}(L(G)) is at most three for triangle-free GG; indeed it can be arbitrarily large. To bound eq(L(G))\mathit{eq}(L(G)) we bound the closely-related invariant σ(G)\sigma(G), which is the minimum number of orientations of GG such that for any two edges e,fe,f incident to some vertex vv, both ee and ff are oriented out of vv in some orientation. When GG is triangle-free, σ(G)=eq(L(G))\sigma(G)=\mathit{eq}(L(G)). We prove that even when GG is triangle-free, it is NP-complete to decide whether or not σ(G)3\sigma(G)\leq 3.Comment: 10 pages, submitted in July 200

    Permutation combinatorics of worldsheet moduli space

    Get PDF
    52 pages, 21 figures52 pages, 21 figures; minor corrections, "On the" dropped from title, matches published version52 pages, 21 figures; minor corrections, "On the" dropped from title, matches published versio

    Square Property, Equitable Partitions, and Product-like Graphs

    Full text link
    Equivalence relations on the edge set of a graph GG that satisfy restrictive conditions on chordless squares play a crucial role in the theory of Cartesian graph products and graph bundles. We show here that such relations in a natural way induce equitable partitions on the vertex set of GG, which in turn give rise to quotient graphs that can have a rich product structure even if GG itself is prime.Comment: 20 pages, 6 figure

    Extremes of the internal energy of the Potts model on cubic graphs

    Get PDF
    We prove tight upper and lower bounds on the internal energy per particle (expected number of monochromatic edges per vertex) in the anti-ferromagnetic Potts model on cubic graphs at every temperature and for all q2q \ge 2. This immediately implies corresponding tight bounds on the anti-ferromagnetic Potts partition function. Taking the zero-temperature limit gives new results in extremal combinatorics: the number of qq-colorings of a 33-regular graph, for any q2q \ge 2, is maximized by a union of K3,3K_{3,3}'s. This proves the d=3d=3 case of a conjecture of Galvin and Tetali

    Model counting for CNF formuals of bounded module treewidth.

    Get PDF
    The modular treewidth of a graph is its treewidth after the contraction of modules. Modular treewidth properly generalizes treewidth and is itself properly generalized by clique-width. We show that the number of satisfying assignments of a CNF formula whose incidence graph has bounded modular treewidth can be computed in polynomial time. This provides new tractable classes of formulas for which #SAT is polynomial. In particular, our result generalizes known results for the treewidth of incidence graphs and is incomparable with known results for clique-width (or rank-width) of signed incidence graphs. The contraction of modules is an effective data reduction procedure. Our algorithm is the first one to harness this technique for #SAT. The order of the polynomial time bound of our algorithm depends on the modular treewidth. We show that this dependency cannot be avoided subject to an assumption from Parameterized Complexity

    Reduction Techniques for Graph Isomorphism in the Context of Width Parameters

    Full text link
    We study the parameterized complexity of the graph isomorphism problem when parameterized by width parameters related to tree decompositions. We apply the following technique to obtain fixed-parameter tractability for such parameters. We first compute an isomorphism invariant set of potential bags for a decomposition and then apply a restricted version of the Weisfeiler-Lehman algorithm to solve isomorphism. With this we show fixed-parameter tractability for several parameters and provide a unified explanation for various isomorphism results concerned with parameters related to tree decompositions. As a possibly first step towards intractability results for parameterized graph isomorphism we develop an fpt Turing-reduction from strong tree width to the a priori unrelated parameter maximum degree.Comment: 23 pages, 4 figure

    Neighborhood complexes and Kronecker double coverings

    Full text link
    The neighborhood complex N(G)N(G) is a simplicial complex assigned to a graph GG whose connectivity gives a lower bound for the chromatic number of GG. We show that if the Kronecker double coverings of graphs are isomorphic, then their neighborhood complexes are isomorphic. As an application, for integers mm and nn greater than 2, we construct connected graphs GG and HH such that N(G)N(H)N(G) \cong N(H) but χ(G)=m\chi(G) = m and χ(H)=n\chi(H) = n. We also construct a graph KGn,kKG_{n,k}' such that KGn,kKG_{n,k}' and the Kneser graph KGn,kKG_{n,k} are not isomorphic but their Kronecker double coverings are isomorphic.Comment: 10 pages. Some results concerning box complexes are deleted. to appear in Osaka J. Mat

    Six signed Petersen graphs, and their automorphisms

    Get PDF
    Up to switching isomorphism there are six ways to put signs on the edges of the Petersen graph. We prove this by computing switching invariants, especially frustration indices and frustration numbers, switching automorphism groups, chromatic numbers, and numbers of proper 1-colorations, thereby illustrating some of the ideas and methods of signed graph theory. We also calculate automorphism groups and clusterability indices, which are not invariant under switching. In the process we develop new properties of signed graphs, especially of their switching automorphism groups.Comment: 39 pp., 7 fi
    corecore