2 research outputs found

    How To Build Enterprise Data Models To Achieve Compliance To Standards Or Regulatory Requirements (and share data).

    Get PDF
    Sharing data between organizations is challenging because it is difficult to ensure that those consuming the data accurately interpret it. The promise of the next generation WWW, the semantic Web, is that semantics about shared data will be represented in ontologies and available for automatic and accurate machine processing of data. Thus, there is inter-organizational business value in developing applications that have ontology-based enterprise models at their core. In an ontology-based enterprise model, business rules and definitions are represented as formal axioms, which are applied to enterprise facts to automatically infer facts not explicitly represented. If the proposition to be inferred is a requirement from, say, ISO 9000 or Sarbanes-Oxley, inference constitutes a model-based proof of compliance. In this paper, we detail the development and application of the TOVE ISO 9000 Micro-Theory, a model of ISO 9000 developed using ontologies for quality management (measurement, traceability, and quality management system ontologies). In so doing, we demonstrate that when enterprise models are developed using ontologies, they can be leveraged to support business analytics problems - in particular, compliance evaluation - and are sharable

    Uses and applications of artificial intelligence in manufacturing

    Get PDF
    The purpose of the THESIS is to provide engineers and personnels with a overview of the concepts that underline Artificial Intelligence and Expert Systems. Artificial Intelligence is concerned with the developments of theories and techniques required to provide a computational engine with the abilities to perceive, think and act, in an intelligent manner in a complex environment. Expert system is branch of Artificial Intelligence where the methods of reasoning emulate those of human experts. Artificial Intelligence derives it\u27s power from its ability to represent complex forms of knowledge, some of it common sense, heuristic and symbolic, and the ability to apply the knowledge in searching for solutions. The Thesis will review : The components of an intelligent system, The basics of knowledge representation, Search based problem solving methods, Expert system technologies, Uses and applications of AI in various manufacturing areas like Design, Process Planning, Production Management, Energy Management, Quality Assurance, Manufacturing Simulation, Robotics, Machine Vision etc. Prime objectives of the Thesis are to understand the basic concepts underlying Artificial Intelligence and be able to identify where the technology may be applied in the field of Manufacturing Engineering
    corecore