6 research outputs found

    On the Equivalence of f-Divergence Balls and Density Bands in Robust Detection

    Full text link
    The paper deals with minimax optimal statistical tests for two composite hypotheses, where each hypothesis is defined by a non-parametric uncertainty set of feasible distributions. It is shown that for every pair of uncertainty sets of the f-divergence ball type, a pair of uncertainty sets of the density band type can be constructed, which is equivalent in the sense that it admits the same pair of least favorable distributions. This result implies that robust tests under ff-divergence ball uncertainty, which are typically only minimax optimal for the single sample case, are also fixed sample size minimax optimal with respect to the equivalent density band uncertainty sets.Comment: 5 pages, 1 figure, accepted for publication in the Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 201

    On the Minimization of Convex Functionals of Probability Distributions Under Band Constraints

    Full text link
    The problem of minimizing convex functionals of probability distributions is solved under the assumption that the density of every distribution is bounded from above and below. A system of sufficient and necessary first-order optimality conditions as well as a bound on the optimality gap of feasible candidate solutions are derived. Based on these results, two numerical algorithms are proposed that iteratively solve the system of optimality conditions on a grid of discrete points. Both algorithms use a block coordinate descent strategy and terminate once the optimality gap falls below the desired tolerance. While the first algorithm is conceptually simpler and more efficient, it is not guaranteed to converge for objective functions that are not strictly convex. This shortcoming is overcome in the second algorithm, which uses an additional outer proximal iteration, and, which is proven to converge under mild assumptions. Two examples are given to demonstrate the theoretical usefulness of the optimality conditions as well as the high efficiency and accuracy of the proposed numerical algorithms.Comment: 13 pages, 5 figures, 2 tables, published in the IEEE Transactions on Signal Processing. In previous versions, the example in Section VI.B contained some mistakes and inaccuracies, which have been fixed in this versio

    Robust Sequential Detection in Distributed Sensor Networks

    Full text link
    We consider the problem of sequential binary hypothesis testing with a distributed sensor network in a non-Gaussian noise environment. To this end, we present a general formulation of the Consensus + Innovations Sequential Probability Ratio Test (CISPRT). Furthermore, we introduce two different concepts for robustifying the CISPRT and propose four different algorithms, namely, the Least-Favorable-Density-CISPRT, the Median-CISPRT, the M-CISPRT, and the Myriad-CISPRT. Subsequently, we analyze their suitability for different binary hypothesis tests before verifying and evaluating their performance in a shift-in-mean and a shift-in-variance scenario.Comment: 13 pages, 5 figure
    corecore