233,844 research outputs found

    MLCapsule: Guarded Offline Deployment of Machine Learning as a Service

    Full text link
    With the widespread use of machine learning (ML) techniques, ML as a service has become increasingly popular. In this setting, an ML model resides on a server and users can query it with their data via an API. However, if the user's input is sensitive, sending it to the server is undesirable and sometimes even legally not possible. Equally, the service provider does not want to share the model by sending it to the client for protecting its intellectual property and pay-per-query business model. In this paper, we propose MLCapsule, a guarded offline deployment of machine learning as a service. MLCapsule executes the model locally on the user's side and therefore the data never leaves the client. Meanwhile, MLCapsule offers the service provider the same level of control and security of its model as the commonly used server-side execution. In addition, MLCapsule is applicable to offline applications that require local execution. Beyond protecting against direct model access, we couple the secure offline deployment with defenses against advanced attacks on machine learning models such as model stealing, reverse engineering, and membership inference

    Deep Active Learning for Dialogue Generation

    Full text link
    We propose an online, end-to-end, neural generative conversational model for open-domain dialogue. It is trained using a unique combination of offline two-phase supervised learning and online human-in-the-loop active learning. While most existing research proposes offline supervision or hand-crafted reward functions for online reinforcement, we devise a novel interactive learning mechanism based on hamming-diverse beam search for response generation and one-character user-feedback at each step. Experiments show that our model inherently promotes the generation of semantically relevant and interesting responses, and can be used to train agents with customized personas, moods and conversational styles.Comment: Accepted at 6th Joint Conference on Lexical and Computational Semantics (*SEM) 2017 (Previously titled "Online Sequence-to-Sequence Active Learning for Open-Domain Dialogue Generation" on ArXiv

    Online Pricing with Offline Data: Phase Transition and Inverse Square Law

    Full text link
    This paper investigates the impact of pre-existing offline data on online learning, in the context of dynamic pricing. We study a single-product dynamic pricing problem over a selling horizon of TT periods. The demand in each period is determined by the price of the product according to a linear demand model with unknown parameters. We assume that before the start of the selling horizon, the seller already has some pre-existing offline data. The offline data set contains nn samples, each of which is an input-output pair consisting of a historical price and an associated demand observation. The seller wants to utilize both the pre-existing offline data and the sequential online data to minimize the regret of the online learning process. We characterize the joint effect of the size, location and dispersion of the offline data on the optimal regret of the online learning process. Specifically, the size, location and dispersion of the offline data are measured by the number of historical samples nn, the distance between the average historical price and the optimal price δ\delta, and the standard deviation of the historical prices σ\sigma, respectively. We show that the optimal regret is Θ~(TT(nT)δ2+nσ2)\widetilde \Theta\left(\sqrt{T}\wedge \frac{T}{(n\wedge T)\delta^2+n\sigma^2}\right), and design a learning algorithm based on the "optimism in the face of uncertainty" principle, whose regret is optimal up to a logarithmic factor. Our results reveal surprising transformations of the optimal regret rate with respect to the size of the offline data, which we refer to as phase transitions. In addition, our results demonstrate that the location and dispersion of the offline data also have an intrinsic effect on the optimal regret, and we quantify this effect via the inverse-square law.Comment: Forthcoming in Management Scienc

    IMPLEMENTASI PEMBELAJARAN BLENDED LEARNING BERBASIS APLIKASI WHATSAPP KELAS 5 SDN GEDANGAN 7 KABUPATEN MALANG

    Get PDF
    This blended learning model is a model that combines teaching models, ways of presenting material, learning styles and media used for support. This model is done by combining face-to-face learning and online learning. Blended learning is considered as a refinement of the e-learning method that specializes learners to conduct a full learning process with an online system. Therefore, blended learning is considered to be more effective and does not make learners feel bored because they still have the opportunity to communicate two-way directly. Blended learning model is a learning model that is implemented by using two methods at once. This learning model usually uses a learning model system that combines technology both online and offline. Blended learning is interpreted as a model that combines learning by using a learning media, but it also combines theories, methods and dimensions of teaching. Based on the results of the research, it can be concluded that the blended learning model is a learning model that in its application combines two methods, which can be done face-to-face in class or online while still paying attention to the learning objectives to be achieved
    corecore