612 research outputs found

    The Z2\mathbb{Z}_2-genus of Kuratowski minors

    Full text link
    A drawing of a graph on a surface is independently even if every pair of nonadjacent edges in the drawing crosses an even number of times. The Z2\mathbb{Z}_2-genus of a graph GG is the minimum gg such that GG has an independently even drawing on the orientable surface of genus gg. An unpublished result by Robertson and Seymour implies that for every tt, every graph of sufficiently large genus contains as a minor a projective t×tt\times t grid or one of the following so-called tt-Kuratowski graphs: K3,tK_{3,t}, or tt copies of K5K_5 or K3,3K_{3,3} sharing at most 22 common vertices. We show that the Z2\mathbb{Z}_2-genus of graphs in these families is unbounded in tt; in fact, equal to their genus. Together, this implies that the genus of a graph is bounded from above by a function of its Z2\mathbb{Z}_2-genus, solving a problem posed by Schaefer and \v{S}tefankovi\v{c}, and giving an approximate version of the Hanani-Tutte theorem on orientable surfaces. We also obtain an analogous result for Euler genus and Euler Z2\mathbb{Z}_2-genus of graphs.Comment: 23 pages, 7 figures; a few references added and correcte

    Correspondence scrolls

    Full text link
    This paper initiates the study of a class of schemes that we call correspondence scrolls, which includes the rational normal scrolls and linearly embedded projective bundle of decomposable bundles, as well as degenerate K3 surfaces, Calabi-Yau 3-folds, and many other examples

    Combinatorics of embeddings

    Full text link
    We offer the following explanation of the statement of the Kuratowski graph planarity criterion and of 6/7 of the statement of the Robertson-Seymour-Thomas intrinsic linking criterion. Let us call a cell complex 'dichotomial' if to every cell there corresponds a unique cell with the complementary set of vertices. Then every dichotomial cell complex is PL homeomorphic to a sphere; there exist precisely two 3-dimensional dichotomial cell complexes, and their 1-skeleta are K_5 and K_{3,3}; and precisely six 4-dimensional ones, and their 1-skeleta all but one graphs of the Petersen family. In higher dimensions n>2, we observe that in order to characterize those compact n-polyhedra that embed in S^{2n} in terms of finitely many "prohibited minors", it suffices to establish finiteness of the list of all (n-1)-connected n-dimensional finite cell complexes that do not embed in S^{2n} yet all their proper subcomplexes and proper cell-like combinatorial quotients embed there. Our main result is that this list contains the n-skeleta of (2n+1)-dimensional dichotomial cell complexes. The 2-skeleta of 5-dimensional dichotomial cell complexes include (apart from the three joins of the i-skeleta of (2i+2)-simplices) at least ten non-simplicial complexes.Comment: 49 pages, 1 figure. Minor improvements in v2 (subsection 4.C on transforms of dichotomial spheres reworked to include more details; subsection 2.D "Algorithmic issues" added, etc
    corecore