991 research outputs found

    Large induced subgraphs via triangulations and CMSO

    Full text link
    We obtain an algorithmic meta-theorem for the following optimization problem. Let \phi\ be a Counting Monadic Second Order Logic (CMSO) formula and t be an integer. For a given graph G, the task is to maximize |X| subject to the following: there is a set of vertices F of G, containing X, such that the subgraph G[F] induced by F is of treewidth at most t, and structure (G[F],X) models \phi. Some special cases of this optimization problem are the following generic examples. Each of these cases contains various problems as a special subcase: 1) "Maximum induced subgraph with at most l copies of cycles of length 0 modulo m", where for fixed nonnegative integers m and l, the task is to find a maximum induced subgraph of a given graph with at most l vertex-disjoint cycles of length 0 modulo m. 2) "Minimum \Gamma-deletion", where for a fixed finite set of graphs \Gamma\ containing a planar graph, the task is to find a maximum induced subgraph of a given graph containing no graph from \Gamma\ as a minor. 3) "Independent \Pi-packing", where for a fixed finite set of connected graphs \Pi, the task is to find an induced subgraph G[F] of a given graph G with the maximum number of connected components, such that each connected component of G[F] is isomorphic to some graph from \Pi. We give an algorithm solving the optimization problem on an n-vertex graph G in time O(#pmc n^{t+4} f(t,\phi)), where #pmc is the number of all potential maximal cliques in G and f is a function depending of t and \phi\ only. We also show how a similar running time can be obtained for the weighted version of the problem. Pipelined with known bounds on the number of potential maximal cliques, we deduce that our optimization problem can be solved in time O(1.7347^n) for arbitrary graphs, and in polynomial time for graph classes with polynomial number of minimal separators

    Long Circuits and Large Euler Subgraphs

    Full text link
    An undirected graph is Eulerian if it is connected and all its vertices are of even degree. Similarly, a directed graph is Eulerian, if for each vertex its in-degree is equal to its out-degree. It is well known that Eulerian graphs can be recognized in polynomial time while the problems of finding a maximum Eulerian subgraph or a maximum induced Eulerian subgraph are NP-hard. In this paper, we study the parameterized complexity of the following Euler subgraph problems: - Large Euler Subgraph: For a given graph G and integer parameter k, does G contain an induced Eulerian subgraph with at least k vertices? - Long Circuit: For a given graph G and integer parameter k, does G contain an Eulerian subgraph with at least k edges? Our main algorithmic result is that Large Euler Subgraph is fixed parameter tractable (FPT) on undirected graphs. We find this a bit surprising because the problem of finding an induced Eulerian subgraph with exactly k vertices is known to be W[1]-hard. The complexity of the problem changes drastically on directed graphs. On directed graphs we obtained the following complexity dichotomy: Large Euler Subgraph is NP-hard for every fixed k>3 and is solvable in polynomial time for k<=3. For Long Circuit, we prove that the problem is FPT on directed and undirected graphs

    Parameterized Edge Hamiltonicity

    Full text link
    We study the parameterized complexity of the classical Edge Hamiltonian Path problem and give several fixed-parameter tractability results. First, we settle an open question of Demaine et al. by showing that Edge Hamiltonian Path is FPT parameterized by vertex cover, and that it also admits a cubic kernel. We then show fixed-parameter tractability even for a generalization of the problem to arbitrary hypergraphs, parameterized by the size of a (supplied) hitting set. We also consider the problem parameterized by treewidth or clique-width. Surprisingly, we show that the problem is FPT for both of these standard parameters, in contrast to its vertex version, which is W-hard for clique-width. Our technique, which may be of independent interest, relies on a structural characterization of clique-width in terms of treewidth and complete bipartite subgraphs due to Gurski and Wanke
    • …
    corecore