3 research outputs found

    Ocean Wave Separation Using CEEMD-Wavelet in GPS Wave Measurement

    No full text
    Monitoring ocean waves plays a crucial role in, for example, coastal environmental and protection studies. Traditional methods for measuring ocean waves are based on ultrasonic sensors and accelerometers. However, the Global Positioning System (GPS) has been introduced recently and has the advantage of being smaller, less expensive, and not requiring calibration in comparison with the traditional methods. Therefore, for accurately measuring ocean waves using GPS, further research on the separation of the wave signals from the vertical GPS-mounted carrier displacements is still necessary. In order to contribute to this topic, we present a novel method that combines complementary ensemble empirical mode decomposition (CEEMD) with a wavelet threshold denoising model (i.e., CEEMD-Wavelet). This method seeks to extract wave signals with less residual noise and without losing useful information. Compared with the wave parameters derived from the moving average skill, high pass filter and wave gauge, the results show that the accuracy of the wave parameters for the proposed method was improved with errors of about 2 cm and 0.2 s for mean wave height and mean period, respectively, verifying the validity of the proposed method

    Ocean Wave Separation Using CEEMD-Wavelet in GPS Wave Measurement

    No full text
    Monitoring ocean waves plays a crucial role in, for example, coastal environmental and protection studies. Traditional methods for measuring ocean waves are based on ultrasonic sensors and accelerometers. However, the Global Positioning System (GPS) has been introduced recently and has the advantage of being smaller, less expensive, and not requiring calibration in comparison with the traditional methods. Therefore, for accurately measuring ocean waves using GPS, further research on the separation of the wave signals from the vertical GPS-mounted carrier displacements is still necessary. In order to contribute to this topic, we present a novel method that combines complementary ensemble empirical mode decomposition (CEEMD) with a wavelet threshold denoising model (i.e., CEEMD-Wavelet). This method seeks to extract wave signals with less residual noise and without losing useful information. Compared with the wave parameters derived from the moving average skill, high pass filter and wave gauge, the results show that the accuracy of the wave parameters for the proposed method was improved with errors of about 2 cm and 0.2 s for mean wave height and mean period, respectively, verifying the validity of the proposed method

    Mesure des marées et des vagues à l'aide d'une bouée GNSS

    Get PDF
    Ce projet effectué en collaboration avec le Centre Interdisciplinaire de Développement en Cartographie des Océans (CIDCO) de Rimouski porte sur la mesure des marées et des vagues à l’aide d’une bouée GNSS. En l’occurrence, une bouée bathymétrique HydroBall® développée par le CIDCO a été adaptée pour le projet. Des modifications comme la stabilisation de l’antenne, la reconfiguration des composantes électroniques et l’augmentation de son autonomie y ont été apportées dans le but d’améliorer la qualité des mesures GNSS (GPS et GLONASS) et de permettre l’acquisition de données sur une période d’un peu plus d’un mois. D’une part, des expérimentations faites au Laboratoire Hydraulique Environnemental de l’INRS pouvant générer des vagues de diverses amplitudes et périodes ont été effectuées. Les traitements GNSS ont permis de décrire le mouvement des vagues afin de mesurer l’amplitude et la période de ces dernières. Ces mesures GNSS ont été comparées à celles de jauges ultrasons très précises utilisées en guise de comparaison. D’autre part, des observations GNSS effectuées à Rimouski sur une période d’observations de plus d’un mois ont été réalisées. Ces mesures de niveau d’eau à l’aide de la bouée GNSS ont été comparées aux mesures du marégraphe de Rimouski du SHC situé à proximité. Les analyses effectuées ont principalement porté sur les traitements GNSS en mode absolu de précision PPP tant pour la mesure des marées que des vagues. À la lumière des résultats obtenus, on constate que cette bouée de petite taille, facilement déployable et peu dispendieuse, permet en un seul instrument la mesure des marées et des vagues à une précision centimétrique, et ce en mode de positionnement absolu.This project, carried out in collaboration with the Interdisciplinary Center for the Development of Ocean Mapping (CIDCO) in Rimouski, approaches the measurement of waves and tides using a GNSS buoy. One of the HydroBall® bathymetric buoy developed by CIDCO was adapted for this specific purpose. Modifications such as stabilization of the antenna, reconfiguration of the electronic components and increase in its autonomy, were made to improve the quality of the GNSS measurements (GPS and GLONASS) and to allow the acquisition of data for a period of up to one month. In the case of the wave measurements, experiments were carried out at the INRS Hydraulic Environmental Laboratory where waves of varying amplitudes and periods were generated. GNSS treatments were used to describe the wave’s movement, thus allowing the determination of their amplitude and period. The GNSS measurements were compared with those of accurate ultrasonic gauges used as reference values. In the case of the tide measurements, GNSS observations were carried out in Rimouski’s harbour over a one month period. These water level measurements using the GNSS buoy were compared to measurements collected from a nearby CHS Tide gauge. The analyzes carried out mainly focused on GNSS processing in an absolute mode using precise point positioning (PPP) for both tide and wave measurements. Our results show that this small, easily deployable and affordable buoy allows, in a single instrument, the measurement of tides and waves at a centimeter level of accuracy using precise point positioning
    corecore