9,586 research outputs found

    Metastates in mean-field models with random external fields generated by Markov chains

    Full text link
    We extend the construction by Kuelske and Iacobelli of metastates in finite-state mean-field models in independent disorder to situations where the local disorder terms are are a sample of an external ergodic Markov chain in equilibrium. We show that for non-degenerate Markov chains, the structure of the theorems is analogous to the case of i.i.d. variables when the limiting weights in the metastate are expressed with the aid of a CLT for the occupation time measure of the chain. As a new phenomenon we also show in a Potts example that, for a degenerate non-reversible chain this CLT approximation is not enough and the metastate can have less symmetry than the symmetry of the interaction and a Gaussian approximation of disorder fluctuations would suggest.Comment: 20 pages, 2 figure

    On the Performance of Short Block Codes over Finite-State Channels in the Rare-Transition Regime

    Full text link
    As the mobile application landscape expands, wireless networks are tasked with supporting different connection profiles, including real-time traffic and delay-sensitive communications. Among many ensuing engineering challenges is the need to better understand the fundamental limits of forward error correction in non-asymptotic regimes. This article characterizes the performance of random block codes over finite-state channels and evaluates their queueing performance under maximum-likelihood decoding. In particular, classical results from information theory are revisited in the context of channels with rare transitions, and bounds on the probabilities of decoding failure are derived for random codes. This creates an analysis framework where channel dependencies within and across codewords are preserved. Such results are subsequently integrated into a queueing problem formulation. For instance, it is shown that, for random coding on the Gilbert-Elliott channel, the performance analysis based on upper bounds on error probability provides very good estimates of system performance and optimum code parameters. Overall, this study offers new insights about the impact of channel correlation on the performance of delay-aware, point-to-point communication links. It also provides novel guidelines on how to select code rates and block lengths for real-time traffic over wireless communication infrastructures

    A survey of generalized inverses and their use in stochastic modelling

    Get PDF
    In many stochastic models, in particular Markov chains in discrete or continuous time and Markov renewal processes, a Markov chain is present either directly or indirectly through some form of embedding. The analysis of many problems of interest associated with these models, eg. stationary distributions, moments of first passage time distributions and moments of occupation time random variables, often concerns the solution of a system of linear equations involving I – P, where P is the transition matrix of a finite, irreducible, discrete time Markov chain. Generalized inverses play an important role in the solution of such singular sets of equations. In this paper we survey the application of generalized inverses to the aforementioned problems. The presentation will include results concerning the analysis of perturbed systems and the characterization of types of generalized inverses associated with Markovian kernels

    A scaling analysis of a cat and mouse Markov chain

    Get PDF
    Motivated by an original on-line page-ranking algorithm, starting from an arbitrary Markov chain (Cn)(C_n) on a discrete state space S{\cal S}, a Markov chain (Cn,Mn)(C_n,M_n) on the product space S2{\cal S}^2, the cat and mouse Markov chain, is constructed. The first coordinate of this Markov chain behaves like the original Markov chain and the second component changes only when both coordinates are equal. The asymptotic properties of this Markov chain are investigated. A representation of its invariant measure is in particular obtained. When the state space is infinite it is shown that this Markov chain is in fact null recurrent if the initial Markov chain (Cn)(C_n) is positive recurrent and reversible. In this context, the scaling properties of the location of the second component, the mouse, are investigated in various situations: simple random walks in Z\mathbb{Z} and Z2\mathbb{Z}^2, reflected simple random walk in N\mathbb{N} and also in a continuous time setting. For several of these processes, a time scaling with rapid growth gives an interesting asymptotic behavior related to limit results for occupation times and rare events of Markov processes.\u
    corecore