5,690 research outputs found

    Towards Full Automated Drive in Urban Environments: A Demonstration in GoMentum Station, California

    Full text link
    Each year, millions of motor vehicle traffic accidents all over the world cause a large number of fatalities, injuries and significant material loss. Automated Driving (AD) has potential to drastically reduce such accidents. In this work, we focus on the technical challenges that arise from AD in urban environments. We present the overall architecture of an AD system and describe in detail the perception and planning modules. The AD system, built on a modified Acura RLX, was demonstrated in a course in GoMentum Station in California. We demonstrated autonomous handling of 4 scenarios: traffic lights, cross-traffic at intersections, construction zones and pedestrians. The AD vehicle displayed safe behavior and performed consistently in repeated demonstrations with slight variations in conditions. Overall, we completed 44 runs, encompassing 110km of automated driving with only 3 cases where the driver intervened the control of the vehicle, mostly due to error in GPS positioning. Our demonstration showed that robust and consistent behavior in urban scenarios is possible, yet more investigation is necessary for full scale roll-out on public roads.Comment: Accepted to Intelligent Vehicles Conference (IV 2017

    Vision-based analysis of pedestrian traffic data

    Get PDF
    Reducing traffic congestion has become a major issue within urban environments. Traditional approaches, such as increasing road sizes, may prove impossible in certain scenarios, such as city centres, or ineffectual if current predictions of large growth in world traffic volumes hold true. An alternative approach lies with increasing the management efficiency of pre-existing infrastructure and public transport systems through the use of Intelligent Transportation Systems (ITS). In this paper, we focus on the requirement of obtaining robust pedestrian traffic flow data within these areas. We propose the use of a flexible and robust stereo-vision pedestrian detection and tracking approach as a basis for obtaining this information. Given this framework, we propose the use of a pedestrian indexing scheme and a suite of tools, which facilitates the declaration of user-defined pedestrian events or requests for specific statistical traffic flow data. The detection of the required events or the constant flow of statistical information can be incorporated into a variety of ITS solutions for applications in traffic management, public transport systems and urban planning
    corecore