10,245 research outputs found

    Deep Learning for Classifying and Characterizing Atmospheric Ducting within the Maritime Setting

    Full text link
    Real-time characterization of refractivity within the marine atmospheric boundary layer can provide valuable information that can potentially be used to mitigate the effects of atmospheric ducting on radar performance. Many duct characterization models are successful at predicting parameters from a specific refractivity profile associated with a given type of duct; however, the ability to classify, and then subsequently characterize, various duct types is an important step towards a more comprehensive prediction model. We introduce a two-step approach using deep learning to differentiate sparsely sampled propagation factor measurements collected under evaporation ducting conditions with those collected under surface-based duct conditions in order to subsequently estimate the appropriate refractivity parameters based on that differentiation. We show that this approach is not only accurate, but also efficient; thus providing a suitable method for real-time applications.Comment: 13 pages, 3 figure

    Data-driven Predictive Energy Optimization in a Wastewater Pumping Station

    Full text link
    Urban wastewater sector is being pushed to optimize processes in order to reduce energy consumption without compromising its quality standards. Energy costs can represent a significant share of the global operational costs (between 50% and 60%) in an intensive energy consumer. Pumping is the largest consumer of electrical energy in a wastewater treatment plant. Thus, the optimal control of pump units can help the utilities to decrease operational costs. This work describes an innovative predictive control policy for wastewater variable-frequency pumps that minimize electrical energy consumption, considering uncertainty forecasts for wastewater intake rate and information collected by sensors accessible through the Supervisory Control and Data Acquisition system. The proposed control method combines statistical learning (regression and predictive models) and deep reinforcement learning (Proximal Policy Optimization). The following main original contributions are produced: i) model-free and data-driven predictive control; ii) control philosophy focused on operating the tank with a variable wastewater set-point level; iii) use of supervised learning to generate synthetic data for pre-training the reinforcement learning policy, without the need to physically interact with the system. The results for a real case-study during 90 days show a 16.7% decrease in electrical energy consumption while still achieving a 97% reduction in the number of alarms (tank level above 7.2 meters) when compared with the current operating scenario (operating with a fixed set-point level). The numerical analysis showed that the proposed data-driven method is able to explore the trade-off between number of alarms and consumption minimization, offering different options to decision-makers

    Machine Learning Methods Economists Should Know About

    Full text link
    We discuss the relevance of the recent Machine Learning (ML) literature for economics and econometrics. First we discuss the differences in goals, methods and settings between the ML literature and the traditional econometrics and statistics literatures. Then we discuss some specific methods from the machine learning literature that we view as important for empirical researchers in economics. These include supervised learning methods for regression and classification, unsupervised learning methods, as well as matrix completion methods. Finally, we highlight newly developed methods at the intersection of ML and econometrics, methods that typically perform better than either off-the-shelf ML or more traditional econometric methods when applied to particular classes of problems, problems that include causal inference for average treatment effects, optimal policy estimation, and estimation of the counterfactual effect of price changes in consumer choice models

    Closed-Form Training of Conditional Random Fields for Large Scale Image Segmentation

    Full text link
    We present LS-CRF, a new method for very efficient large-scale training of Conditional Random Fields (CRFs). It is inspired by existing closed-form expressions for the maximum likelihood parameters of a generative graphical model with tree topology. LS-CRF training requires only solving a set of independent regression problems, for which closed-form expression as well as efficient iterative solvers are available. This makes it orders of magnitude faster than conventional maximum likelihood learning for CRFs that require repeated runs of probabilistic inference. At the same time, the models learned by our method still allow for joint inference at test time. We apply LS-CRF to the task of semantic image segmentation, showing that it is highly efficient, even for loopy models where probabilistic inference is problematic. It allows the training of image segmentation models from significantly larger training sets than had been used previously. We demonstrate this on two new datasets that form a second contribution of this paper. They consist of over 180,000 images with figure-ground segmentation annotations. Our large-scale experiments show that the possibilities of CRF-based image segmentation are far from exhausted, indicating, for example, that semi-supervised learning and the use of non-linear predictors are promising directions for achieving higher segmentation accuracy in the future

    Persistent-Homology-based Machine Learning and its Applications -- A Survey

    Full text link
    A suitable feature representation that can both preserve the data intrinsic information and reduce data complexity and dimensionality is key to the performance of machine learning models. Deeply rooted in algebraic topology, persistent homology (PH) provides a delicate balance between data simplification and intrinsic structure characterization, and has been applied to various areas successfully. However, the combination of PH and machine learning has been hindered greatly by three challenges, namely topological representation of data, PH-based distance measurements or metrics, and PH-based feature representation. With the development of topological data analysis, progresses have been made on all these three problems, but widely scattered in different literatures. In this paper, we provide a systematical review of PH and PH-based supervised and unsupervised models from a computational perspective. Our emphasizes are the recent development of mathematical models and tools, including PH softwares and PH-based functions, feature representations, kernels, and similarity models. Essentially, this paper can work as a roadmap for the practical application of PH-based machine learning tools. Further, we consider different topological feature representations in different machine learning models, and investigate their impacts on the protein secondary structure classification.Comment: 42 pages; 6 figures; 9 table

    Machine learning in acoustics: theory and applications

    Full text link
    Acoustic data provide scientific and engineering insights in fields ranging from biology and communications to ocean and Earth science. We survey the recent advances and transformative potential of machine learning (ML), including deep learning, in the field of acoustics. ML is a broad family of techniques, which are often based in statistics, for automatically detecting and utilizing patterns in data. Relative to conventional acoustics and signal processing, ML is data-driven. Given sufficient training data, ML can discover complex relationships between features and desired labels or actions, or between features themselves. With large volumes of training data, ML can discover models describing complex acoustic phenomena such as human speech and reverberation. ML in acoustics is rapidly developing with compelling results and significant future promise. We first introduce ML, then highlight ML developments in four acoustics research areas: source localization in speech processing, source localization in ocean acoustics, bioacoustics, and environmental sounds in everyday scenes.Comment: Published with free access in Journal of the Acoustical Society of America, 27 Nov. 201

    Machine Learning Analysis of Heterogeneity in the Effect of Student Mindset Interventions

    Full text link
    We study heterogeneity in the effect of a mindset intervention on student-level performance through an observational dataset from the National Study of Learning Mindsets (NSLM). Our analysis uses machine learning (ML) to address the following associated problems: assessing treatment group overlap and covariate balance, imputing conditional average treatment effects, and interpreting imputed effects. By comparing several different model families we illustrate the flexibility of both off-the-shelf and purpose-built estimators. We find that the mindset intervention has a positive average effect of 0.26, 95%-CI [0.22, 0.30], and that heterogeneity in the range of [0.1, 0.4] is moderated by school-level achievement level, poverty concentration, urbanicity, and student prior expectations

    A Scalable Machine Learning Approach for Inferring Probabilistic US-LI-RADS Categorization

    Full text link
    We propose a scalable computerized approach for large-scale inference of Liver Imaging Reporting and Data System (LI-RADS) final assessment categories in narrative ultrasound (US) reports. Although our model was trained on reports created using a LI-RADS template, it was also able to infer LI-RADS scoring for unstructured reports that were created before the LI-RADS guidelines were established. No human-labelled data was required in any step of this study; for training, LI-RADS scores were automatically extracted from those reports that contained structured LI-RADS scores, and it translated the derived knowledge to reasoning on unstructured radiology reports. By providing automated LI-RADS categorization, our approach may enable standardizing screening recommendations and treatment planning of patients at risk for hepatocellular carcinoma, and it may facilitate AI-based healthcare research with US images by offering large scale text mining and data gathering opportunities from standard hospital clinical data repositories.Comment: AMIA Annual Symposium 2018 (accepted

    A Primal-Dual Method for Training Recurrent Neural Networks Constrained by the Echo-State Property

    Full text link
    We present an architecture of a recurrent neural network (RNN) with a fully-connected deep neural network (DNN) as its feature extractor. The RNN is equipped with both causal temporal prediction and non-causal look-ahead, via auto-regression (AR) and moving-average (MA), respectively. The focus of this paper is a primal-dual training method that formulates the learning of the RNN as a formal optimization problem with an inequality constraint that provides a sufficient condition for the stability of the network dynamics. Experimental results demonstrate the effectiveness of this new method, which achieves 18.86% phone recognition error on the TIMIT benchmark for the core test set. The result approaches the best result of 17.7%, which was obtained by using RNN with long short-term memory (LSTM). The results also show that the proposed primal-dual training method produces lower recognition errors than the popular RNN methods developed earlier based on the carefully tuned threshold parameter that heuristically prevents the gradient from exploding
    • …
    corecore