11,434 research outputs found

    Analysis and Modeling of 3D Indoor Scenes

    Full text link
    We live in a 3D world, performing activities and interacting with objects in the indoor environments everyday. Indoor scenes are the most familiar and essential environments in everyone's life. In the virtual world, 3D indoor scenes are also ubiquitous in 3D games and interior design. With the fast development of VR/AR devices and the emerging applications, the demand of realistic 3D indoor scenes keeps growing rapidly. Currently, designing detailed 3D indoor scenes requires proficient 3D designing and modeling skills and is often time-consuming. For novice users, creating realistic and complex 3D indoor scenes is even more difficult and challenging. Many efforts have been made in different research communities, e.g. computer graphics, vision and robotics, to capture, analyze and generate the 3D indoor data. This report mainly focuses on the recent research progress in graphics on geometry, structure and semantic analysis of 3D indoor data and different modeling techniques for creating plausible and realistic indoor scenes. We first review works on understanding and semantic modeling of scenes from captured 3D data of the real world. Then, we focus on the virtual scenes composed of 3D CAD models and study methods for 3D scene analysis and processing. After that, we survey various modeling paradigms for creating 3D indoor scenes and investigate human-centric scene analysis and modeling, which bridge indoor scene studies of graphics, vision and robotics. At last, we discuss open problems in indoor scene processing that might bring interests to graphics and all related communities

    SmartAnnotator: An Interactive Tool for Annotating RGBD Indoor Images

    Full text link
    RGBD images with high quality annotations in the form of geometric (i.e., segmentation) and structural (i.e., how do the segments are mutually related in 3D) information provide valuable priors to a large number of scene and image manipulation applications. While it is now simple to acquire RGBD images, annotating them, automatically or manually, remains challenging especially in cluttered noisy environments. We present SmartAnnotator, an interactive system to facilitate annotating RGBD images. The system performs the tedious tasks of grouping pixels, creating potential abstracted cuboids, inferring object interactions in 3D, and comes up with various hypotheses. The user simply has to flip through a list of suggestions for segment labels, finalize a selection, and the system updates the remaining hypotheses. As objects are finalized, the process speeds up with fewer ambiguities to resolve. Further, as more scenes are annotated, the system makes better suggestions based on structural and geometric priors learns from the previous annotation sessions. We test our system on a large number of database scenes and report significant improvements over naive low-level annotation tools.Comment: 10 page

    Configurable 3D Scene Synthesis and 2D Image Rendering with Per-Pixel Ground Truth using Stochastic Grammars

    Full text link
    We propose a systematic learning-based approach to the generation of massive quantities of synthetic 3D scenes and arbitrary numbers of photorealistic 2D images thereof, with associated ground truth information, for the purposes of training, benchmarking, and diagnosing learning-based computer vision and robotics algorithms. In particular, we devise a learning-based pipeline of algorithms capable of automatically generating and rendering a potentially infinite variety of indoor scenes by using a stochastic grammar, represented as an attributed Spatial And-Or Graph, in conjunction with state-of-the-art physics-based rendering. Our pipeline is capable of synthesizing scene layouts with high diversity, and it is configurable inasmuch as it enables the precise customization and control of important attributes of the generated scenes. It renders photorealistic RGB images of the generated scenes while automatically synthesizing detailed, per-pixel ground truth data, including visible surface depth and normal, object identity, and material information (detailed to object parts), as well as environments (e.g., illuminations and camera viewpoints). We demonstrate the value of our synthesized dataset, by improving performance in certain machine-learning-based scene understanding tasks--depth and surface normal prediction, semantic segmentation, reconstruction, etc.--and by providing benchmarks for and diagnostics of trained models by modifying object attributes and scene properties in a controllable manner.Comment: Accepted in IJCV 201

    SeeThrough: Finding Chairs in Heavily Occluded Indoor Scene Images

    Full text link
    Discovering 3D arrangements of objects from single indoor images is important given its many applications including interior design, content creation, etc. Although heavily researched in the recent years, existing approaches break down under medium or heavy occlusion as the core object detection module starts failing in absence of directly visible cues. Instead, we take into account holistic contextual 3D information, exploiting the fact that objects in indoor scenes co-occur mostly in typical near-regular configurations. First, we use a neural network trained on real indoor annotated images to extract 2D keypoints, and feed them to a 3D candidate object generation stage. Then, we solve a global selection problem among these 3D candidates using pairwise co-occurrence statistics discovered from a large 3D scene database. We iterate the process allowing for candidates with low keypoint response to be incrementally detected based on the location of the already discovered nearby objects. Focusing on chairs, we demonstrate significant performance improvement over combinations of state-of-the-art methods, especially for scenes with moderately to severely occluded objects

    Automatic Generation of Constrained Furniture Layouts

    Full text link
    Efficient authoring of vast virtual environments hinges on algorithms that are able to automatically generate content while also being controllable. We propose a method to automatically generate furniture layouts for indoor environments. Our method is simple, efficient, human-interpretable and amenable to a wide variety of constraints. We model the composition of rooms into classes of objects and learn joint (co-occurrence) statistics from a database of training layouts. We generate new layouts by performing a sequence of conditional sampling steps, exploiting the statistics learned from the database. The generated layouts are specified as 3D object models, along with their positions and orientations. We show they are of equivalent perceived quality to the training layouts, and compare favorably to a state-of-the-art method. We incorporate constraints using a general mechanism -- rejection sampling -- which provides great flexibility at the cost of extra computation. We demonstrate the versatility of our method by applying a wide variety of constraints relevant to real-world applications

    Meta-Sim: Learning to Generate Synthetic Datasets

    Full text link
    Training models to high-end performance requires availability of large labeled datasets, which are expensive to get. The goal of our work is to automatically synthesize labeled datasets that are relevant for a downstream task. We propose Meta-Sim, which learns a generative model of synthetic scenes, and obtain images as well as its corresponding ground-truth via a graphics engine. We parametrize our dataset generator with a neural network, which learns to modify attributes of scene graphs obtained from probabilistic scene grammars, so as to minimize the distribution gap between its rendered outputs and target data. If the real dataset comes with a small labeled validation set, we additionally aim to optimize a meta-objective, i.e. downstream task performance. Experiments show that the proposed method can greatly improve content generation quality over a human-engineered probabilistic scene grammar, both qualitatively and quantitatively as measured by performance on a downstream task.Comment: Webpage: https://nv-tlabs.github.io/meta-sim

    Joint Layout Estimation and Global Multi-View Registration for Indoor Reconstruction

    Full text link
    In this paper, we propose a novel method to jointly solve scene layout estimation and global registration problems for accurate indoor 3D reconstruction. Given a sequence of range data, we first build a set of scene fragments using KinectFusion and register them through pose graph optimization. Afterwards, we alternate between layout estimation and layout-based global registration processes in iterative fashion to complement each other. We extract the scene layout through hierarchical agglomerative clustering and energy-based multi-model fitting in consideration of noisy measurements. Having the estimated scene layout in one hand, we register all the range data through the global iterative closest point algorithm where the positions of 3D points that belong to the layout such as walls and a ceiling are constrained to be close to the layout. We experimentally verify the proposed method with the publicly available synthetic and real-world datasets in both quantitative and qualitative ways.Comment: Accepted to 2017 IEEE International Conference on Computer Vision (ICCV

    Complete 3D Scene Parsing from an RGBD Image

    Full text link
    One major goal of vision is to infer physical models of objects, surfaces, and their layout from sensors. In this paper, we aim to interpret indoor scenes from one RGBD image. Our representation encodes the layout of orthogonal walls and the extent of objects, modeled with CAD-like 3D shapes. We parse both the visible and occluded portions of the scene and all observable objects, producing a complete 3D parse. Such a scene interpretation is useful for robotics and visual reasoning, but difficult to produce due to the well-known challenge of segmentation, the high degree of occlusion, and the diversity of objects in indoor scenes. We take a data-driven approach, generating sets of potential object regions, matching to regions in training images, and transferring and aligning associated 3D models while encouraging fit to observations and spatial consistency. We use support inference to aid interpretation and propose a retrieval scheme that uses convolutional neural networks (CNNs) to classify regions and retrieve objects with similar shapes. We demonstrate the performance of our method on our newly annotated NYUd v2 dataset with detailed 3D shapes.Comment: Accepted to International Journal of Computer Vision (IJCV), 2018 arXiv admin note: text overlap with arXiv:1504.0243

    Visualizing Natural Language Descriptions: A Survey

    Full text link
    A natural language interface exploits the conceptual simplicity and naturalness of the language to create a high-level user-friendly communication channel between humans and machines. One of the promising applications of such interfaces is generating visual interpretations of semantic content of a given natural language that can be then visualized either as a static scene or a dynamic animation. This survey discusses requirements and challenges of developing such systems and reports 26 graphical systems that exploit natural language interfaces and addresses both artificial intelligence and visualization aspects. This work serves as a frame of reference to researchers and to enable further advances in the field.Comment: Due to copyright most of the figures only appear in the journal versio

    The Stixel world: A medium-level representation of traffic scenes

    Full text link
    Recent progress in advanced driver assistance systems and the race towards autonomous vehicles is mainly driven by two factors: (1) increasingly sophisticated algorithms that interpret the environment around the vehicle and react accordingly, and (2) the continuous improvements of sensor technology itself. In terms of cameras, these improvements typically include higher spatial resolution, which as a consequence requires more data to be processed. The trend to add multiple cameras to cover the entire surrounding of the vehicle is not conducive in that matter. At the same time, an increasing number of special purpose algorithms need access to the sensor input data to correctly interpret the various complex situations that can occur, particularly in urban traffic. By observing those trends, it becomes clear that a key challenge for vision architectures in intelligent vehicles is to share computational resources. We believe this challenge should be faced by introducing a representation of the sensory data that provides compressed and structured access to all relevant visual content of the scene. The Stixel World discussed in this paper is such a representation. It is a medium-level model of the environment that is specifically designed to compress information about obstacles by leveraging the typical layout of outdoor traffic scenes. It has proven useful for a multitude of automotive vision applications, including object detection, tracking, segmentation, and mapping. In this paper, we summarize the ideas behind the model and generalize it to take into account multiple dense input streams: the image itself, stereo depth maps, and semantic class probability maps that can be generated, e.g., by CNNs. Our generalization is embedded into a novel mathematical formulation for the Stixel model. We further sketch how the free parameters of the model can be learned using structured SVMs.Comment: Accepted for publication in Image and Vision Computin
    • …
    corecore