1,376,121 research outputs found

    Semantic modelling of learning objects and instruction

    Get PDF
    We introduce an ontology-based semantic modelling framework that addresses subject domain modelling, instruction modelling, and interoperability aspects in the development of complex reusable learning objects. Ontologies are knowledge representation frameworks, ideally suited to support knowledge-based modelling of these learning objects. We illustrate the benefits of semantic modelling for learning object assemblies within the context of standards such as SCORM Sequencing and Navigation and Learning Object Metadata

    Relation Networks for Object Detection

    Full text link
    Although it is well believed for years that modeling relations between objects would help object recognition, there has not been evidence that the idea is working in the deep learning era. All state-of-the-art object detection systems still rely on recognizing object instances individually, without exploiting their relations during learning. This work proposes an object relation module. It processes a set of objects simultaneously through interaction between their appearance feature and geometry, thus allowing modeling of their relations. It is lightweight and in-place. It does not require additional supervision and is easy to embed in existing networks. It is shown effective on improving object recognition and duplicate removal steps in the modern object detection pipeline. It verifies the efficacy of modeling object relations in CNN based detection. It gives rise to the first fully end-to-end object detector
    corecore