4 research outputs found

    Object-Level Representation Learning for Few-Shot Image Classification

    Full text link
    Few-shot learning that trains image classifiers over few labeled examples per category is a challenging task. In this paper, we propose to exploit an additional big dataset with different categories to improve the accuracy of few-shot learning over our target dataset. Our approach is based on the observation that images can be decomposed into objects, which may appear in images from both the additional dataset and our target dataset. We use the object-level relation learned from the additional dataset to infer the similarity of images in our target dataset with unseen categories. Nearest neighbor search is applied to do image classification, which is a non-parametric model and thus does not need fine-tuning. We evaluate our algorithm on two popular datasets, namely Omniglot and MiniImagenet. We obtain 8.5\% and 2.7\% absolute improvements for 5-way 1-shot and 5-way 5-shot experiments on MiniImagenet, respectively. Source code will be published upon acceptance

    Leveraging Pretrained Image Classifiers for Language-Based Segmentation

    Full text link
    Current semantic segmentation models cannot easily generalize to new object classes unseen during train time: they require additional annotated images and retraining. We propose a novel segmentation model that injects visual priors into semantic segmentation architectures, allowing them to segment out new target labels without retraining. As visual priors, we use the activations of pretrained image classifiers, which provide noisy indications of the spatial location of both the target object and distractor objects in the scene. We leverage language semantics to obtain these activations for a target label unseen by the classifier. Further experiments show that the visual priors obtained via language semantics for both relevant and distracting objects are key to our performance

    Revisiting Metric Learning for Few-Shot Image Classification

    Full text link
    The goal of few-shot learning is to recognize new visual concepts with just a few amount of labeled samples in each class. Recent effective metric-based few-shot approaches employ neural networks to learn a feature similarity comparison between query and support examples. However, the importance of feature embedding, i.e., exploring the relationship among training samples, is neglected. In this work, we present a simple yet powerful baseline for few-shot classification by emphasizing the importance of feature embedding. Specifically, we revisit the classical triplet network from deep metric learning, and extend it into a deep K-tuplet network for few-shot learning, utilizing the relationship among the input samples to learn a general representation learning via episode-training. Once trained, our network is able to extract discriminative features for unseen novel categories and can be seamlessly incorporated with a non-linear distance metric function to facilitate the few-shot classification. Our result on the miniImageNet benchmark outperforms other metric-based few-shot classification methods. More importantly, when evaluated on completely different datasets (Caltech-101, CUB-200, Stanford Dogs and Cars) using the model trained with miniImageNet, our method significantly outperforms prior methods, demonstrating its superior capability to generalize to unseen classes.Comment: Accept at Neurocomputin

    Small Sample Learning in Big Data Era

    Full text link
    As a promising area in artificial intelligence, a new learning paradigm, called Small Sample Learning (SSL), has been attracting prominent research attention in the recent years. In this paper, we aim to present a survey to comprehensively introduce the current techniques proposed on this topic. Specifically, current SSL techniques can be mainly divided into two categories. The first category of SSL approaches can be called "concept learning", which emphasizes learning new concepts from only few related observations. The purpose is mainly to simulate human learning behaviors like recognition, generation, imagination, synthesis and analysis. The second category is called "experience learning", which usually co-exists with the large sample learning manner of conventional machine learning. This category mainly focuses on learning with insufficient samples, and can also be called small data learning in some literatures. More extensive surveys on both categories of SSL techniques are introduced and some neuroscience evidences are provided to clarify the rationality of the entire SSL regime, and the relationship with human learning process. Some discussions on the main challenges and possible future research directions along this line are also presented.Comment: 76 pages, 15 figures, survey of small sample learnin
    corecore