37,413 research outputs found

    Action Recognition in Videos: from Motion Capture Labs to the Web

    Full text link
    This paper presents a survey of human action recognition approaches based on visual data recorded from a single video camera. We propose an organizing framework which puts in evidence the evolution of the area, with techniques moving from heavily constrained motion capture scenarios towards more challenging, realistic, "in the wild" videos. The proposed organization is based on the representation used as input for the recognition task, emphasizing the hypothesis assumed and thus, the constraints imposed on the type of video that each technique is able to address. Expliciting the hypothesis and constraints makes the framework particularly useful to select a method, given an application. Another advantage of the proposed organization is that it allows categorizing newest approaches seamlessly with traditional ones, while providing an insightful perspective of the evolution of the action recognition task up to now. That perspective is the basis for the discussion in the end of the paper, where we also present the main open issues in the area.Comment: Preprint submitted to CVIU, survey paper, 46 pages, 2 figures, 4 table

    Unitization during Category Learning

    Get PDF
    Five experiments explored the question of whether new perceptual units can be developed if they are diagnostic for a category learning task, and if so, what are the constraints on this unitization process? During category learning, participants were required to attend either a single component or a conjunction of five components in order to correctly categorize an object. In Experiments 1-4, some evidence for unitization was found in that the conjunctive task becomes much easier with practice, and this improvement was not found for the single component task, or for conjunctive tasks where the components cannot be unitized. Influences of component order (Experiment 1), component contiguity (Experiment 2), component proximity (Experiment 3), and number of components (Experiment 4) on practice effects were found. Using a Fourier Transformation method for deconvolving response times (Experiment 5), prolonged practice effects yielded responses that were faster than expected by analytic model that integrate evidence from independently perceived components

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149ā€“164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by Ā±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    The Complementary Brain: A Unifying View of Brain Specialization and Modularity

    Full text link
    Defense Advanced Research Projects Agency and Office of Naval Research (N00014-95-I-0409); National Science Foundation (ITI-97-20333); Office of Naval Research (N00014-95-I-0657

    The Complementary Brain: From Brain Dynamics To Conscious Experiences

    Full text link
    How do our brains so effectively achieve adaptive behavior in a changing world? Evidence is reviewed that brains are organized into parallel processing streams with complementary properties. Hierarchical interactions within each stream and parallel interactions between streams create coherent behavioral representations that overcome the complementary deficiencies of each stream and support unitary conscious experiences. This perspective suggests how brain design reflects the organization of the physical world with which brains interact, and suggests an alternative to the computer metaphor suggesting that brains are organized into independent modules. Examples from perception, learning, cognition, and action are described, and theoretical concepts and mechanisms by which complementarity is accomplished are summarized.Defense Advanced Research Projects and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (ITI-97-20333); Office of Naval Research (N00014-95-1-0657

    Enlightened Romanticism: Mary Gartsideā€™s colour theory in the age of Moses Harris, Goethe and George Field

    Get PDF
    The aim of this paper is to evaluate the work of Mary Gartside, a British female colour theorist, active in London between 1781 and 1808. She published three books between 1805 and 1808. In chronological and intellectual terms Gartside can cautiously be regarded an exemplary link between Moses Harris, who published a short but important theory of colour in the second half of the eighteenth century, and J.W. von Goetheā€™s highly influential Zur Farbenlehre, published in Germany in 1810. Gartsideā€™s colour theory was published privately under the disguise of a traditional water colouring manual, illustrated with stunning abstract colour blots (see example above). Until well into the twentieth century, she remained the only woman known to have published a theory of colour. In contrast to Goethe and other colour theorists in the late 18th and early 19th century Gartside was less inclined to follow the anti-Newtonian attitudes of the Romantic movement
    • ā€¦
    corecore