354 research outputs found

    Cross-Dataset Person Re-Identification via Unsupervised Pose Disentanglement and Adaptation

    Full text link
    Person re-identification (re-ID) aims at recognizing the same person from images taken across different cameras. To address this challenging task, existing re-ID models typically rely on a large amount of labeled training data, which is not practical for real-world applications. To alleviate this limitation, researchers now targets at cross-dataset re-ID which focuses on generalizing the discriminative ability to the unlabeled target domain when given a labeled source domain dataset. To achieve this goal, our proposed Pose Disentanglement and Adaptation Network (PDA-Net) aims at learning deep image representation with pose and domain information properly disentangled. With the learned cross-domain pose invariant feature space, our proposed PDA-Net is able to perform pose disentanglement across domains without supervision in identities, and the resulting features can be applied to cross-dataset re-ID. Both of our qualitative and quantitative results on two benchmark datasets confirm the effectiveness of our approach and its superiority over the state-of-the-art cross-dataset Re-ID approaches.Comment: Accepted to ICCV 201

    Unsupervised Disentanglement GAN for Domain Adaptive Person Re-Identification

    Full text link
    While recent person re-identification (ReID) methods achieve high accuracy in a supervised setting, their generalization to an unlabelled domain is still an open problem. In this paper, we introduce a novel unsupervised disentanglement generative adversarial network (UD-GAN) to address the domain adaptation issue of supervised person ReID. Our framework jointly trains a ReID network for discriminative features extraction in a source labelled domain using identity annotation, and adapts the ReID model to an unlabelled target domain by learning disentangled latent representations on the domain. Identity-unrelated features in the target domain are distilled from the latent features. As a result, the ReID features better encompass the identity of a person in the unsupervised domain. We conducted experiments on the Market1501, DukeMTMC and MSMT17 datasets. Results show that the unsupervised domain adaptation problem in ReID is very challenging. Nevertheless, our method shows improvement in half of the domain transfers and achieve state-of-the-art performance for one of them.Comment: 8 pages, 5 figures, submitted to ICPR 202

    Learning to Generalize over Subpartitions for Heterogeneity-aware Domain Adaptive Nuclei Segmentation

    Full text link
    Annotation scarcity and cross-modality/stain data distribution shifts are two major obstacles hindering the application of deep learning models for nuclei analysis, which holds a broad spectrum of potential applications in digital pathology. Recently, unsupervised domain adaptation (UDA) methods have been proposed to mitigate the distributional gap between different imaging modalities for unsupervised nuclei segmentation in histopathology images. However, existing UDA methods are built upon the assumption that data distributions within each domain should be uniform. Based on the over-simplified supposition, they propose to align the histopathology target domain with the source domain integrally, neglecting severe intra-domain discrepancy over subpartitions incurred by mixed cancer types and sampling organs. In this paper, for the first time, we propose to explicitly consider the heterogeneity within the histopathology domain and introduce open compound domain adaptation (OCDA) to resolve the crux. In specific, a two-stage disentanglement framework is proposed to acquire domain-invariant feature representations at both image and instance levels. The holistic design addresses the limitations of existing OCDA approaches which struggle to capture instance-wise variations. Two regularization strategies are specifically devised herein to leverage the rich subpartition-specific characteristics in histopathology images and facilitate subdomain decomposition. Moreover, we propose a dual-branch nucleus shape and structure preserving module to prevent nucleus over-generation and deformation in the synthesized images. Experimental results on both cross-modality and cross-stain scenarios over a broad range of diverse datasets demonstrate the superiority of our method compared with state-of-the-art UDA and OCDA methods

    Domain Generalization -- A Causal Perspective

    Full text link
    Machine learning models rely on various assumptions to attain high accuracy. One of the preliminary assumptions of these models is the independent and identical distribution, which suggests that the train and test data are sampled from the same distribution. However, this assumption seldom holds in the real world due to distribution shifts. As a result models that rely on this assumption exhibit poor generalization capabilities. Over the recent years, dedicated efforts have been made to improve the generalization capabilities of these models collectively known as -- \textit{domain generalization methods}. The primary idea behind these methods is to identify stable features or mechanisms that remain invariant across the different distributions. Many generalization approaches employ causal theories to describe invariance since causality and invariance are inextricably intertwined. However, current surveys deal with the causality-aware domain generalization methods on a very high-level. Furthermore, we argue that it is possible to categorize the methods based on how causality is leveraged in that method and in which part of the model pipeline is it used. To this end, we categorize the causal domain generalization methods into three categories, namely, (i) Invariance via Causal Data Augmentation methods which are applied during the data pre-processing stage, (ii) Invariance via Causal representation learning methods that are utilized during the representation learning stage, and (iii) Invariance via Transferring Causal mechanisms methods that are applied during the classification stage of the pipeline. Furthermore, this survey includes in-depth insights into benchmark datasets and code repositories for domain generalization methods. We conclude the survey with insights and discussions on future directions
    • …
    corecore