50,783 research outputs found

    Going Deeper into First-Person Activity Recognition

    Full text link
    We bring together ideas from recent work on feature design for egocentric action recognition under one framework by exploring the use of deep convolutional neural networks (CNN). Recent work has shown that features such as hand appearance, object attributes, local hand motion and camera ego-motion are important for characterizing first-person actions. To integrate these ideas under one framework, we propose a twin stream network architecture, where one stream analyzes appearance information and the other stream analyzes motion information. Our appearance stream encodes prior knowledge of the egocentric paradigm by explicitly training the network to segment hands and localize objects. By visualizing certain neuron activation of our network, we show that our proposed architecture naturally learns features that capture object attributes and hand-object configurations. Our extensive experiments on benchmark egocentric action datasets show that our deep architecture enables recognition rates that significantly outperform state-of-the-art techniques -- an average 6.6%6.6\% increase in accuracy over all datasets. Furthermore, by learning to recognize objects, actions and activities jointly, the performance of individual recognition tasks also increase by 30%30\% (actions) and 14%14\% (objects). We also include the results of extensive ablative analysis to highlight the importance of network design decisions.

    Video Stream Retrieval of Unseen Queries using Semantic Memory

    Get PDF
    Retrieval of live, user-broadcast video streams is an under-addressed and increasingly relevant challenge. The on-line nature of the problem requires temporal evaluation and the unforeseeable scope of potential queries motivates an approach which can accommodate arbitrary search queries. To account for the breadth of possible queries, we adopt a no-example approach to query retrieval, which uses a query's semantic relatedness to pre-trained concept classifiers. To adapt to shifting video content, we propose memory pooling and memory welling methods that favor recent information over long past content. We identify two stream retrieval tasks, instantaneous retrieval at any particular time and continuous retrieval over a prolonged duration, and propose means for evaluating them. Three large scale video datasets are adapted to the challenge of stream retrieval. We report results for our search methods on the new stream retrieval tasks, as well as demonstrate their efficacy in a traditional, non-streaming video task.Comment: Presented at BMVC 2016, British Machine Vision Conference, 201

    Activity Recognition based on a Magnitude-Orientation Stream Network

    Full text link
    The temporal component of videos provides an important clue for activity recognition, as a number of activities can be reliably recognized based on the motion information. In view of that, this work proposes a novel temporal stream for two-stream convolutional networks based on images computed from the optical flow magnitude and orientation, named Magnitude-Orientation Stream (MOS), to learn the motion in a better and richer manner. Our method applies simple nonlinear transformations on the vertical and horizontal components of the optical flow to generate input images for the temporal stream. Experimental results, carried on two well-known datasets (HMDB51 and UCF101), demonstrate that using our proposed temporal stream as input to existing neural network architectures can improve their performance for activity recognition. Results demonstrate that our temporal stream provides complementary information able to improve the classical two-stream methods, indicating the suitability of our approach to be used as a temporal video representation.Comment: 8 pages, SIBGRAPI 201
    • …
    corecore