918,661 research outputs found

    Exercise Does Not Effect Context-dependent Episodic Memory

    Get PDF
    Memory has been shown to be strongly associated with the context in which it is encoded, suggesting that the context is central to the memory itself. However, the effect of exercise on context dependent object recognition is not fully known. We then set out to investigate the effect of exercise on context dependent object recognition. In Experiment 1 we showed that a context change reduced object recognition memory but did not significantly disrupt object recognition. In Experiment 2 we assessed whether exercise would the mitigate the effect of context change. We showed that exercise does not significantly improve object recognition nor did it mitigate the effect of context change on object recognition. These results suggest that a discrete context change can significantly disrupt retrieval of object recognition memory. Our results do not agree with the body of literature related to this topic, so further inquisition into these effects should be undertaken to confirm or refute the impact of exercise on contextual object recognition

    Monocular SLAM Supported Object Recognition

    Get PDF
    In this work, we develop a monocular SLAM-aware object recognition system that is able to achieve considerably stronger recognition performance, as compared to classical object recognition systems that function on a frame-by-frame basis. By incorporating several key ideas including multi-view object proposals and efficient feature encoding methods, our proposed system is able to detect and robustly recognize objects in its environment using a single RGB camera in near-constant time. Through experiments, we illustrate the utility of using such a system to effectively detect and recognize objects, incorporating multiple object viewpoint detections into a unified prediction hypothesis. The performance of the proposed recognition system is evaluated on the UW RGB-D Dataset, showing strong recognition performance and scalable run-time performance compared to current state-of-the-art recognition systems.Comment: Accepted to appear at Robotics: Science and Systems 2015, Rome, Ital

    Multiple Moving Object Recognitions in video based on Log Gabor-PCA Approach

    Full text link
    Object recognition in the video sequence or images is one of the sub-field of computer vision. Moving object recognition from a video sequence is an appealing topic with applications in various areas such as airport safety, intrusion surveillance, video monitoring, intelligent highway, etc. Moving object recognition is the most challenging task in intelligent video surveillance system. In this regard, many techniques have been proposed based on different methods. Despite of its importance, moving object recognition in complex environments is still far from being completely solved for low resolution videos, foggy videos, and also dim video sequences. All in all, these make it necessary to develop exceedingly robust techniques. This paper introduces multiple moving object recognition in the video sequence based on LoG Gabor-PCA approach and Angle based distance Similarity measures techniques used to recognize the object as a human, vehicle etc. Number of experiments are conducted for indoor and outdoor video sequences of standard datasets and also our own collection of video sequences comprising of partial night vision video sequences. Experimental results show that our proposed approach achieves an excellent recognition rate. Results obtained are satisfactory and competent.Comment: 8,26,conferenc

    IOD-CNN: Integrating Object Detection Networks for Event Recognition

    Full text link
    Many previous methods have showed the importance of considering semantically relevant objects for performing event recognition, yet none of the methods have exploited the power of deep convolutional neural networks to directly integrate relevant object information into a unified network. We present a novel unified deep CNN architecture which integrates architecturally different, yet semantically-related object detection networks to enhance the performance of the event recognition task. Our architecture allows the sharing of the convolutional layers and a fully connected layer which effectively integrates event recognition, rigid object detection and non-rigid object detection.Comment: submitted to IEEE International Conference on Image Processing 201
    • …
    corecore