66,607 research outputs found

    Object labelling from human action recognition

    Full text link
    Reproduced with the kind permissions of the copyright owner. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. Copyright: 2003, IEE

    Deep Learning for Detecting Multiple Space-Time Action Tubes in Videos

    Get PDF
    In this work, we propose an approach to the spatiotemporal localisation (detection) and classification of multiple concurrent actions within temporally untrimmed videos. Our framework is composed of three stages. In stage 1, appearance and motion detection networks are employed to localise and score actions from colour images and optical flow. In stage 2, the appearance network detections are boosted by combining them with the motion detection scores, in proportion to their respective spatial overlap. In stage 3, sequences of detection boxes most likely to be associated with a single action instance, called action tubes, are constructed by solving two energy maximisation problems via dynamic programming. While in the first pass, action paths spanning the whole video are built by linking detection boxes over time using their class-specific scores and their spatial overlap, in the second pass, temporal trimming is performed by ensuring label consistency for all constituting detection boxes. We demonstrate the performance of our algorithm on the challenging UCF101, J-HMDB-21 and LIRIS-HARL datasets, achieving new state-of-the-art results across the board and significantly increasing detection speed at test time. We achieve a huge leap forward in action detection performance and report a 20% and 11% gain in mAP (mean average precision) on UCF-101 and J-HMDB-21 datasets respectively when compared to the state-of-the-art.Comment: Accepted by British Machine Vision Conference 201

    Robust recognition and segmentation of human actions using HMMs with missing observations

    Get PDF
    This paper describes the integration of missing observation data with hidden Markov models to create a framework that is able to segment and classify individual actions from a stream of human motion using an incomplete 3D human pose estimation. Based on this framework, a model is trained to automatically segment and classify an activity sequence into its constituent subactions during inferencing. This is achieved by introducing action labels into the observation vector and setting these labels as missing data during inferencing, thus forcing the system to infer the probability of each action label. Additionally, missing data provides recognition-level support for occlusions and imperfect silhouette segmentation, permitting the use of a fast (real-time) pose estimation that delegates the burden of handling undetected limbs onto the action recognition system. Findings show that the use of missing data to segment activities is an accurate and elegant approach. Furthermore, action recognition can be accurate even when almost half of the pose feature data is missing due to occlusions, since not all of the pose data is important all of the time

    Joint Geometrical and Statistical Alignment for Visual Domain Adaptation

    Full text link
    This paper presents a novel unsupervised domain adaptation method for cross-domain visual recognition. We propose a unified framework that reduces the shift between domains both statistically and geometrically, referred to as Joint Geometrical and Statistical Alignment (JGSA). Specifically, we learn two coupled projections that project the source domain and target domain data into low dimensional subspaces where the geometrical shift and distribution shift are reduced simultaneously. The objective function can be solved efficiently in a closed form. Extensive experiments have verified that the proposed method significantly outperforms several state-of-the-art domain adaptation methods on a synthetic dataset and three different real world cross-domain visual recognition tasks
    • …
    corecore