2,207 research outputs found

    Object Detection and Classification in Occupancy Grid Maps using Deep Convolutional Networks

    Full text link
    A detailed environment perception is a crucial component of automated vehicles. However, to deal with the amount of perceived information, we also require segmentation strategies. Based on a grid map environment representation, well-suited for sensor fusion, free-space estimation and machine learning, we detect and classify objects using deep convolutional neural networks. As input for our networks we use a multi-layer grid map efficiently encoding 3D range sensor information. The inference output consists of a list of rotated bounding boxes with associated semantic classes. We conduct extensive ablation studies, highlight important design considerations when using grid maps and evaluate our models on the KITTI Bird's Eye View benchmark. Qualitative and quantitative benchmark results show that we achieve robust detection and state of the art accuracy solely using top-view grid maps from range sensor data.Comment: 6 pages, 4 tables, 4 figure

    Fully Convolutional Neural Networks for Dynamic Object Detection in Grid Maps

    Full text link
    Grid maps are widely used in robotics to represent obstacles in the environment and differentiating dynamic objects from static infrastructure is essential for many practical applications. In this work, we present a methods that uses a deep convolutional neural network (CNN) to infer whether grid cells are covering a moving object or not. Compared to tracking approaches, that use e.g. a particle filter to estimate grid cell velocities and then make a decision for individual grid cells based on this estimate, our approach uses the entire grid map as input image for a CNN that inspects a larger area around each cell and thus takes the structural appearance in the grid map into account to make a decision. Compared to our reference method, our concept yields a performance increase from 83.9% to 97.2%. A runtime optimized version of our approach yields similar improvements with an execution time of just 10 milliseconds.Comment: This is a shorter version of the masters thesis of Florian Piewak and it was accapted at IV 201

    PIXOR: Real-time 3D Object Detection from Point Clouds

    Full text link
    We address the problem of real-time 3D object detection from point clouds in the context of autonomous driving. Computation speed is critical as detection is a necessary component for safety. Existing approaches are, however, expensive in computation due to high dimensionality of point clouds. We utilize the 3D data more efficiently by representing the scene from the Bird's Eye View (BEV), and propose PIXOR, a proposal-free, single-stage detector that outputs oriented 3D object estimates decoded from pixel-wise neural network predictions. The input representation, network architecture, and model optimization are especially designed to balance high accuracy and real-time efficiency. We validate PIXOR on two datasets: the KITTI BEV object detection benchmark, and a large-scale 3D vehicle detection benchmark. In both datasets we show that the proposed detector surpasses other state-of-the-art methods notably in terms of Average Precision (AP), while still runs at >28 FPS.Comment: Update of CVPR2018 paper: correct timing, fix typos, add acknowledgemen

    End-to-End Tracking and Semantic Segmentation Using Recurrent Neural Networks

    Full text link
    In this work we present a novel end-to-end framework for tracking and classifying a robot's surroundings in complex, dynamic and only partially observable real-world environments. The approach deploys a recurrent neural network to filter an input stream of raw laser measurements in order to directly infer object locations, along with their identity in both visible and occluded areas. To achieve this we first train the network using unsupervised Deep Tracking, a recently proposed theoretical framework for end-to-end space occupancy prediction. We show that by learning to track on a large amount of unsupervised data, the network creates a rich internal representation of its environment which we in turn exploit through the principle of inductive transfer of knowledge to perform the task of it's semantic classification. As a result, we show that only a small amount of labelled data suffices to steer the network towards mastering this additional task. Furthermore we propose a novel recurrent neural network architecture specifically tailored to tracking and semantic classification in real-world robotics applications. We demonstrate the tracking and classification performance of the method on real-world data collected at a busy road junction. Our evaluation shows that the proposed end-to-end framework compares favourably to a state-of-the-art, model-free tracking solution and that it outperforms a conventional one-shot training scheme for semantic classification
    • …
    corecore