42,398 research outputs found

    Knowledge Representation Concepts for Automated SLA Management

    Full text link
    Outsourcing of complex IT infrastructure to IT service providers has increased substantially during the past years. IT service providers must be able to fulfil their service-quality commitments based upon predefined Service Level Agreements (SLAs) with the service customer. They need to manage, execute and maintain thousands of SLAs for different customers and different types of services, which needs new levels of flexibility and automation not available with the current technology. The complexity of contractual logic in SLAs requires new forms of knowledge representation to automatically draw inferences and execute contractual agreements. A logic-based approach provides several advantages including automated rule chaining allowing for compact knowledge representation as well as flexibility to adapt to rapidly changing business requirements. We suggest adequate logical formalisms for representation and enforcement of SLA rules and describe a proof-of-concept implementation. The article describes selected formalisms of the ContractLog KR and their adequacy for automated SLA management and presents results of experiments to demonstrate flexibility and scalability of the approach.Comment: Paschke, A. and Bichler, M.: Knowledge Representation Concepts for Automated SLA Management, Int. Journal of Decision Support Systems (DSS), submitted 19th March 200

    IVOA Recommendation: VOResource: an XML Encoding Schema for Resource Metadata Version 1.03

    Full text link
    This document describes an XML encoding standard for IVOA Resource Metadata, referred to as VOResource. This schema is primarily intended to support interoperable registries used for discovering resources; however, any application that needs to describe resources may use this schema. In this document, we define the types and elements that make up the schema as representations of metadata terms defined in the IVOA standard, Resource Metadata for the Virtual Observatory [Hanicsh et al. 2004]. We also describe the general model for the schema and explain how it may be extended to add new metadata terms and describe more specific types of resources

    Measuring and Evaluating a Design Complexity Metric for XML Schema Documents

    Get PDF
    The eXtensible Markup Language (XML) has been gaining extraordinary acceptance from many diverse enterprise software companies for their object repositories, data interchange, and development tools. Further, many different domains, organizations and content providers have been publishing and exchanging information via internet by the usage of XML and standard schemas. Efficient implementation of XML in these domains requires well designed XML schemas. In this point of view, design of XML schemas plays an extremely important role in software development process and needs to be quantified for ease of maintainability. In this paper, an attempt has been made to evaluate the quality of XML schema documents (XSD) written in W3C XML Schema language. We propose a metric, which measures the complexity due to the internal architecture of XSD components, and due to recursion. This is the single metric, which cover all major factors responsible for complexity of XSD. The metric has been empirically and theoretically validated, demonstrated with examples and supported by comparison with other well known structure metrics applied on XML schema documents

    BSML: A Binding Schema Markup Language for Data Interchange in Problem Solving Environments (PSEs)

    Full text link
    We describe a binding schema markup language (BSML) for describing data interchange between scientific codes. Such a facility is an important constituent of scientific problem solving environments (PSEs). BSML is designed to integrate with a PSE or application composition system that views model specification and execution as a problem of managing semistructured data. The data interchange problem is addressed by three techniques for processing semistructured data: validation, binding, and conversion. We present BSML and describe its application to a PSE for wireless communications system design

    Derivation of diagnostic models based on formalized process knowledge

    Get PDF
    © IFAC.Industrial systems are vulnerable to faults. Early and accurate detection and diagnosis in production systems can minimize down-time, increase the safety of the plant operation, and reduce manufacturing costs. Knowledge- and model-based approaches to automated fault detection and diagnosis have been demonstrated to be suitable for fault cause analysis within a broad range of industrial processes and research case studies. However, the implementation of these methods demands a complex and error-prone development phase, especially due to the extensive efforts required during the derivation of models and their respective validation. In an effort to reduce such modeling complexity, this paper presents a structured causal modeling approach to supporting the derivation of diagnostic models based on formalized process knowledge. The method described herein exploits the Formalized Process Description Guideline VDI/VDE 3682 to establish causal relations among key-process variables, develops an extension of the Signed Digraph model combined with the use of fuzzy set theory to allow more accurate causality descriptions, and proposes a representation of the resulting diagnostic model in CAEX/AutomationML targeting dynamic data access, portability, and seamless information exchange
    • …
    corecore