30,042 research outputs found
On-stack replacement, distilled
On-stack replacement (OSR) is essential technology for adaptive optimization, allowing changes to code actively executing in a managed runtime. The engineering aspects of OSR are well-known among VM architects, with several implementations available to date. However, OSR is yet to be explored as a general means to transfer execution between related program versions, which can pave the road to unprecedented applications that stretch beyond VMs. We aim at filling this gap with a constructive and provably correct OSR framework, allowing a class of general-purpose transformation functions to yield a special-purpose replacement. We describe and evaluate an implementation of our technique in LLVM. As a novel application of OSR, we present a feasibility study on debugging of optimized code, showing how our techniques can be used to fix variables holding incorrect values at breakpoints due to optimizations
Impact of shortened crop rotation of oilseed rape on soil and rhizosphere microbial diversity in relation to yield decline
Oilseed rape (OSR) grown in monoculture shows a decline in yield relative to virgin OSR of up to 25%, but the mechanisms responsible are unknown. A long term field experiment of OSR grown in a range of rotations with wheat was used to determine whether shifts in fungal and bacterial populations of the rhizosphere and bulk soil were associated with the development of OSR yield decline. The communities of fungi and bacteria in the rhizosphere and bulk soil from the field experiment were profiled using terminal restriction fragment length polymorphism (TRFLP) and sequencing of cloned internal transcribed spacer regions and 16S rRNA genes, respectively. OSR cropping frequency had no effect on rhizosphere bacterial communities. However, the rhizosphere fungal communities from continuously grown OSR were significantly different to those from other rotations. This was due primarily to an increase in abundance of two fungi which showed 100% and 95% DNA identity to the plant pathogens Olpidium brassicae and Pyrenochaeta lycopersici, respectively. Real-time PCR confirmed that there was significantly more of these fungi in the continuously grown OSR than the other rotations. These two fungi were isolated from the field and used to inoculate OSR and Brassica oleracea grown under controlled conditions in a glasshouse to determine their effect on yield. At high doses, Olpidium brassicae reduced top growth and root biomass in seedlings and reduced branching and subsequent pod and seed production. Pyrenochaeta sp. formed lesions on the roots of seedlings, and at high doses delayed flowering and had a negative impact on seed quantity and quality
How to account for quantum non-locality: ontic structural realism and the primitive ontology of quantum physics
The paper has two aims: (1) it sets out to show that it is well motivated to
seek for an account of quantum non-locality in the framework of ontic
structural realism (OSR), which integrates the notions of holism and
non-separability that have been employed since the 1980s to achieve such an
account. However, recent research shows that OSR on its own cannot provide such
an account. Against this background, the paper argues that by applying OSR to
the primitive ontology theories of quantum physics, one can accomplish that
task. In particular, Bohmian mechanics offers the best prospect for doing so.
(2) In general, the paper seeks to bring OSR and the primitive ontology
theories of quantum physics together: on the one hand, in order to be
applicable to quantum mechanics, OSR has to consider what the quantum ontology
of matter distributed in space-time is. On the other hand, as regards the
primitive ontology theories, OSR provides the conceptual tools for these
theories to answer the question of what the ontological status of the
wave-function is.Comment: arXiv admin note: substantial text overlap with arXiv:1406.073
Kraus decomposition for chaotic environments
We consider a system interacting with a chaotic thermodynamic bath. We derive
an explicit and exact Kraus operator sum representation (OSR) for the open
system reduced density. The OSR preserves the Hermiticity, complete positivity
and norm. We show that it is useful as a numerical tool by testing it against
exact results for a qubit interacting with an isolated flawed quantum computer.
We also discuss some interesting qualitative aspects of the OSR
Generalism and the Metaphysics of Ontic Structural Realism
Ontic structural realism (OSR) claims that all there is to the world is structure. But how can this slogan be turned into a worked-out metaphysics? Here I consider one potential answer: a metaphysical framework known as generalism (Dasgupta, 2009, 2016). According to the generalist, the most fundamental description of the world is not given in terms of individuals bearing properties, but rather, general facts about which states of affairs obtain. However, I contend that despite several apparent similarities between the positions, generalism is unable to capture the two main motivations for OSR. I suggest instead that OSR should be construed as a meta-metaphysical position
Topological superfluid of spinless Fermi gases in p-band honeycomb optical lattices with on-site rotation
In this paper, we put forward to another route realizing topological
superfluid (TS). In contrast to conventional method, spin-orbit coupling and
external magnetic field are not requisite. Introducing an experimentally
feasible technique called on-site rotation (OSR) into p-band honeycomb optical
lattices for spinless Fermi gases and considering CDW and pairing on the same
footing, we investigate the effects of OSR on superfluidity. The results
suggest that when OSR is beyond a critical value, where CDW vanishes, the
system transits from a normal superfluid (NS) with zero TKNN number to TS
labeled by a non-zero TKNN number. In addition, phase transitions between
different TS are also possible
Formal Analysis of V2X Revocation Protocols
Research on vehicular networking (V2X) security has produced a range of
security mechanisms and protocols tailored for this domain, addressing both
security and privacy. Typically, the security analysis of these proposals has
largely been informal. However, formal analysis can be used to expose flaws and
ultimately provide a higher level of assurance in the protocols.
This paper focusses on the formal analysis of a particular element of
security mechanisms for V2X found in many proposals: the revocation of
malicious or misbehaving vehicles from the V2X system by invalidating their
credentials. This revocation needs to be performed in an unlinkable way for
vehicle privacy even in the context of vehicles regularly changing their
pseudonyms. The REWIRE scheme by Forster et al. and its subschemes BASIC and
RTOKEN aim to solve this challenge by means of cryptographic solutions and
trusted hardware.
Formal analysis using the TAMARIN prover identifies two flaws with some of
the functional correctness and authentication properties in these schemes. We
then propose Obscure Token (OTOKEN), an extension of REWIRE to enable
revocation in a privacy preserving manner. Our approach addresses the
functional and authentication properties by introducing an additional key-pair,
which offers a stronger and verifiable guarantee of successful revocation of
vehicles without resolving the long-term identity. Moreover OTOKEN is the first
V2X revocation protocol to be co-designed with a formal model.Comment: 16 pages, 4 figure
Robustness of Decoherence-Free Subspaces for Quantum Computation
It was shown recently [D.A. Lidar et al., Phys. Rev. Lett. 81, 2594 (1998)]
that within the framework of the semigroup Markovian master equation,
decoherence-free (DF) subspaces exist which are stable to first order in time
to a perturbation. Here this result is extended to the non-Markovian regime and
generalized. In particular, it is shown that within both the semigroup and the
non-Markovian operator sum representation, DF subspaces are stable to all
orders in time to a symmetry-breaking perturbation. DF subspaces are thus ideal
for quantum memory applications. For quantum computation, however, the
stability result does not extend beyond the first order. Thus, to perform
robust quantum computation in DF subspaces, they must be supplemented with
quantum error correcting codes.Comment: 16 pages, no figures. Several changes, including a clarification of
the derivation of the Lindblad equation from the operator sum representation.
To appear in Phys. Rev
- …
