436,073 research outputs found

    Cross-linked CoMoO4/rGO nanosheets as oxygen reduction catalyst

    Get PDF
    Development of inexpensive and robust electrocatalysts towards oxygen reduction reaction (ORR) is crucial for the cost-affordable manufacturing of metal-air batteries and fuel cells. Here we show that cross-linked CoMoO4 nanosheets and reduced graphene oxide (CoMoO4/rGO) can be integrated in a hybrid material under one-pot hydrothermal conditions, yielding a composite material with promising catalytic activity for oxygen reduction reaction (ORR). Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were used to investigate the efficiency of the fabricated CoMoO4/rGO catalyst towards ORR in alkaline conditions. The CoMoO4/rGO composite revealed the main reduction peak and onset potential centered at 0.78 and 0.89 V (vs. RHE), respectively. This study shows that the CoMoO4/rGO composite is a highly promising catalyst for the ORR under alkaline conditions, and potential noble metal replacement cathode in fuel cells and metal-air batteries

    Theoretical Study of Solvent Effects on the Platinum-Catalyzed Oxygen Reduction Reaction

    Get PDF
    We report here density functional theory (DFT) studies (PBE) of the reaction intermediates and barriers involved in the oxygen reduction reaction (ORR) on a platinum fuel cell catalyst. Solvent effects were taken into account by applying continuum Poisson−Boltzmann theory to the bound adsorbates and to the transition states of the various reactions on the platinum (111) surface. Our calculations show that the solvent effects change significantly the reaction barriers compared with those in the gas-phase environment (without solvation). The O_2 dissociation barrier decreases from 0.58 to 0.27 eV, whereas the H + O → OH formation barrier increases from 0.73 to 1.09 eV. In the water-solvated phase, OH formation becomes the rate-determining step for both ORR mechanisms, O_2 dissociation and OOH association, proposed earlier for the gas-phase environment. Both mechanisms become significantly less favorable for the platinum catalytic surface in water solvent, suggesting that alternative mechanisms must be considered to describe properly the ORR on the platinum surface

    Microbial catalysis of the oxygen reduction reaction for microbial fuel cells: a review.

    Get PDF
    The slow kinetics of the electrochemical oxygen reduction reaction (ORR) is a crucial bottleneck in the development of microbial fuel cells (MFCs). This article firstly gives an overview of the particular constraints imposed on ORR by MFC operating conditions: neutral pH, slow oxygen mass transfer, sensitivity to reactive oxygen species, fouling and biofouling. A review of the literature is then proposed to assess how microbial catalysis could afford suitable solutions. Actually, microbial catalysis of ORR occurs spontaneously on the surface of metallic materials and is an effective motor of microbial corrosion. In this framework, several mechanisms have been proposed, which are reviewed in the second part of the article. The last part describes the efforts made in the domain of MFCs to determine the microbial ecology of electroactive biofilms and define efficient protocols for the formation of microbial oxygen-reducing cathodes. Although no clear mechanism has been established yet, several promising solutions have been recently proposed

    Space and place: writing encounters self

    Get PDF
    In addition to contributing this editorial article, Susan Orr and Claire Hind guest edited this issue
    corecore