3,700 research outputs found
Increasing Distributed Generation Penetration using Soft Normally-Open Points
This paper considers the effects of various voltage control solutions on facilitating an increase in allowable levels of distributed generation installation before voltage violations occur. In particular, the voltage control solution that is focused on is the implementation of `soft' normally-open points (SNOPs), a term which refers to power electronic devices installed in place of a normally-open point in a medium-voltage distribution network which allows for control of real and reactive power flows between each end point of its installation sites. While other benefits of SNOP installation are discussed, the intent of this paper is to determine whether SNOPs are a viable alternative to other voltage control strategies for this particular application. As such, the SNOPs ability to affect the voltage profile along feeders within a distribution system is focused on with other voltage control options used for comparative purposes. Results from studies on multiple network models with varying topologies are presented and a case study which considers economic benefits of increasing feasible DG penetration is also given
Recommended from our members
Secure High DER Penetration Power Distribution Via Autonomously Coordinated Volt/VAR Control
Traditionally voltage control in distribution power system (DPS) is performed through voltage regulating devices (VRDs) including on load tap changers (OLTCs), step voltage regulators (SVRs), and switched capacitor banks (SCBs). The recent IEEE 1547-2018 from March 2018 requires inverter fed distributed energy resources (DERs) to contribute reactive power to support the grid voltage. To accommodate VAR from DERs, well-organized control algorithm is required to use in this mode to avoid grid oscillations and unintended switching operations of VRDs. This paper presents two voltage control strategies (i) static voltage control considering voltage-reactive power mode (IEEE 1547-2018), (ii) dynamic and extensive voltage control with maximum utilization of DER capacity and system stability. Further, effective time-graded control is implemented between VRDs and DER units to reduce the simultaneous and negative operation. The proposed voltage control strategies are tested in a realistic 140-bus southern California distribution power system through extensive time-domain simulation studies. The results show that voltage quality in a distribution system is effectively achieved through the proposed voltage control strategies with a significantly reduction in the number of switching operations of VRDs. In addition, proposed voltage control strategies increase reliability and security of the DPS during unexpected failures
Fuzzy Inference System for VOLT/VAR control in distribution substations in isolated power systems
This paper presents a fuzzy inference system for voltage/reactive power
control in distribution substations. The purpose is go forward to automation
distribution and its implementation in isolated power systems where control
capabilities are limited and it is common using the same applications as in
continental power systems. This means that lot of functionalities do not apply
and computational burden generates high response times. A fuzzy controller,
with logic guidelines embedded based upon heuristic rules resulting from
operators at dispatch control center past experience, has been designed.
Working as an on-line tool, it has been tested under real conditions and it has
managed the operation during a whole day in a distribution substation. Within
the limits of control capabilities of the system, the controller maintained
successfully an acceptable voltage profile, power factor values over 0,98 and
it has ostensibly improved the performance given by an optimal power flow based
automation system
AC OPF in Radial Distribution Networks - Parts I,II
The optimal power-flow problem (OPF) has played a key role in the planning
and operation of power systems. Due to the non-linear nature of the AC
power-flow equations, the OPF problem is known to be non-convex, therefore hard
to solve. Most proposed methods for solving the OPF rely on approximations that
render the problem convex, but that may yield inexact solutions. Recently,
Farivar and Low proposed a method that is claimed to be exact for radial
distribution systems, despite no apparent approximations. In our work, we show
that it is, in fact, not exact. On one hand, there is a misinterpretation of
the physical network model related to the ampacity constraint of the lines'
current flows. On the other hand, the proof of the exactness of the proposed
relaxation requires unrealistic assumptions related to the unboundedness of
specific control variables. We also show that the extension of this approach to
account for exact line models might provide physically infeasible solutions.
Recently, several contributions have proposed OPF algorithms that rely on the
use of the alternating-direction method of multipliers (ADMM). However, as we
show in this work, there are cases for which the ADMM-based solution of the
non-relaxed OPF problem fails to converge. To overcome the aforementioned
limitations, we propose an algorithm for the solution of a non-approximated,
non-convex OPF problem in radial distribution systems that is based on the
method of multipliers, and on a primal decomposition of the OPF. This work is
divided in two parts. In Part I, we specifically discuss the limitations of BFM
and ADMM to solve the OPF problem. In Part II, we provide a centralized version
and a distributed asynchronous version of the proposed OPF algorithm and we
evaluate its performances using both small-scale electrical networks, as well
as a modified IEEE 13-node test feeder
THE EFFECTS OF DISAGGREGATED SAVINGS ON ECONOMIC GROWTH IN MALAYSIA - GENERALISED VARIANCE DECOMPOSITION ANALYSIS
This study examines how much of the variance in economic growth can be explained by various categories of domestic and foreign savings in Malaysia. The bounds testing approach to cointegration and the generalised forecast error variance decomposition technique was used to achieve the objective of this study. The cointegration test results demonstrate that the relationship between economic growth and savings in Malaysia are stable and coalescing in the long run. The variance decomposition finding indicates that economic growth in Malaysia is dominated by domestic savings such as private and public savings. However, the effect of foreign savings on economic growth is relatively insignificant.Cointegration; Disaggregate savings; Growth; Generalised variance decomposition; Malaysia
Distributed Generation Control using Protection Principles
In a distribution system, it is essential to maintain the voltage variation within a specified limit for satisfactory operation of connected customers' equipment. Normally, this goal is achieved by controlling the operation of compensating devices, such as load tap changing transformers, shunt capacitors, series capacitors, shunt reactors, and static VAr compensators. However, technical and regulatory developments are encouraging a greater number of small generator units, known as Distributed Generation (DG), and this has the potential to significantly affect voltage control systems. This paper presents an adaptive voltage control technique which incorporates DG systems into the voltage control system. The control scheme uses On-load Tap Changing Transformer (OLTC) and DG for voltage corrections, both are driven by advanced Line Drop Compensators (LDC). At the substation, the LDC is employed to control step up or step down decisions of the OLTC, while another LDC will be used at DG connection point to set DG parameters. Also, for a more cost-effective system, voltage control action coordination is proposed using magnitude grading and time grading. The control approach is tested on a modified distribution system with load variations that are stochastic in time and location. The results show that the integration of these magnitude grading and time grading, protection principles have considerably reduced the DG energy required to achieve the desired control
Reducing Voltage Volatility with Step Voltage Regulators: A Life-Cycle Cost Analysis of Korean Solar Photovoltaic Distributed Generation
To meet the United Nation’s sustainable development energy goal, the Korean Ministry of Commerce announced they would increase renewable energy generation to 5.3% by 2029. These energy sources are often produced in small-scale power plants located close to the end users, known as distributed generation (DG). The use of DG is an excellent way to reduce greenhouse gases but has also been found to reduce power quality and safety reliability through an increase in voltage volatility. This paper performs a life-cycle cost analysis on the use of step voltage regulators (SVR) to reduce said volatility, simulating the impact they have on existing Korean solar photovoltaic (PV) DG. From the data collected on a Korean Electrical Power Corporation 30 km/8.2 megawatts (MW) feeder system, SVRs were found to increase earnings by one million USD. SVR volatile voltage mitigation increased expected earnings by increasing the estimated allowable PV power generation by 2.7 MW. While this study is based on Korean PV power generation, its findings are applicable to any DG sources worldwide.11Nsciescopu
- …
