2,200 research outputs found

    Frequency-domain precoding for single carrier frequency-division multiple access

    Get PDF

    Impact of radio resource allocation and pulse shaping on PAPR of SC-FDMA signals

    Get PDF

    Performance Evaluation of Low Density Spreading Multiple Access

    Get PDF
    In this paper, we evaluate the performance of Multicarrier-Low Density Spreading Multiple Access (MC-LDSMA) as a multiple access technique for mobile communication systems. The MC-LDSMA technique is compared with current multiple access techniques, OFDMA and SC-FDMA. The performance is evaluated in terms of cubic metric, block error rate, spectral efficiency and fairness. The aim is to investigate the expected gains of using MC-LDSMA in the uplink for next generation cellular systems. The simulation results of the link and system-level performance evaluation show that MC-LDSMA has significant performance improvements over SC-FDMA and OFDMA. It is shown that using MC-LDSMA can considerably reduce the required transmission power and increase the spectral efficiency and fairness among the users

    A novel uplink multiple access scheme based on TDS-FDMA

    No full text
    This contribution proposes a novel time-domain synchronous frequency division multiple access (TDS-FDMA) scheme to support multi-user uplink application. A unified frame structure for both single-carrier and multi-carrier transmissions and the corresponding low-complexity receiver design are derived. Compared with standard cyclic prefix based orthogonal frequency division multiple access systems, the proposed TDSFDMA scheme improves the spectral efficiency by about 5% to 10% as well as imposes a similarly low computational complexity, while obtaining a slightly better bit error rate performance over Rayleigh fading channels

    Frame Structure Design and Analysis for Millimeter Wave Cellular Systems

    Full text link
    The millimeter-wave (mmWave) frequencies have attracted considerable attention for fifth generation (5G) cellular communication as they offer orders of magnitude greater bandwidth than current cellular systems. However, the medium access control (MAC) layer may need to be significantly redesigned to support the highly directional transmissions, ultra-low latencies and high peak rates expected in mmWave communication. To address these challenges, we present a novel mmWave MAC layer frame structure with a number of enhancements including flexible, highly granular transmission times, dynamic control signal locations, extended messaging and ability to efficiently multiplex directional control signals. Analytic formulae are derived for the utilization and control overhead as a function of control periodicity, number of users, traffic statistics, signal-to-noise ratio and antenna gains. Importantly, the analysis can incorporate various front-end MIMO capability assumptions -- a critical feature of mmWave. Under realistic system and traffic assumptions, the analysis reveals that the proposed flexible frame structure design offers significant benefits over designs with fixed frame structures similar to current 4G long-term evolution (LTE). It is also shown that fully digital beamforming architectures offer significantly lower overhead compared to analog and hybrid beamforming under equivalent power budgets.Comment: Submitted to IEEE Transactions for Wireless Communication
    corecore